860
Views
47
CrossRef citations to date
0
Altmetric
Review Article

Emission controls of mercury and other trace elements during coal combustion in China: a review

, , , , , , & show all
Pages 638-670 | Received 02 Mar 2017, Accepted 30 Jul 2017, Published online: 11 Aug 2017

References

  • Abad-Valle, P., Lopez-Anton, M.A., Diaz-Somoano, M., Juan, R., Rubio, B., Garcia, J.R., Khainakov, S.A., and Martinez-Tarazona, M.R., 2011a, Influence of iron species present in fly ashes on mercury retention and oxidation: Fuel, v. 90, p. 2808–2811. doi:10.1016/j.fuel.2011.04.031
  • Abad-Valle, P., Lopez-Anton, M.A., Diaz-Somoano, M., and Martinez-Tarazona, M.R., 2011b, The role of unburned carbon concentrates from fly ashes in the oxidation and retention of mercury: Chemical Engineering Journal, v. 174, p. 86–92. doi:10.1016/j.cej.2011.08.053
  • Aboud, S., Sasmaz, E., and Wilcox, J., 2008, Mercury adsorption on PdAu, PdAg and PdCu alloys: Main Group Chemistry, v. 7, p. 205–215. doi:10.1080/10241220802465213
  • Agnihotri, R., Chauk, S., Mahuli, S., and Fan, L.S., 1998, Selenium capture using sorbent powders: Mechanism of sorption by hydrated lime: Environmental Science & Technology, v. 32, p. 1841–1846. doi:10.1021/es971119j
  • Bai, X.F., 2003, The distribution, modes of occurrence and volatility of trace elements in coals of China [Ph.D.]: Beijing, China Coal Research Institute, 26 p.
  • Bai, X.F., Li, W.H., Chen, Y.F., and Yang, Y., 2007, The general distributions of trace elements in Chinese coals: Coal Quality Technology, v. 1, p. 1–4. in Chinese with English abstract.
  • Baltrus, J.P., Granite, E.J., Pennline, H.W., Stanko, D., Hamilton, H., Rowsell, L., Poulston, S., Smith, A., and Chu, W., 2010, Surface characterization of palladium–alumina sorbents for high-temperature capture of mercury and arsenic from fuel gas: Fuel, v. 89, p. 1323–1325. doi:10.1016/j.fuel.2009.09.030
  • Baltrus, J.P., Granite, E.J., Rupp, E.C., Stanko, D.C., Howard, B., and Pennline, H.W., 2011, Effect of palladium dispersion on the capture of toxic components from fuel gas by palladium-alumina sorbents: Fuel, v. 90, p. 1992–1998. doi:10.1016/j.fuel.2011.01.001
  • Bosch, H., and Janssen, F., 1988, Catalytic reduction of nitrogen oxides: Catalysis Reviews, v. 2, p. 369–531.
  • BP, 2015, Statistical review of world energy, June, London, UK: British Petroleum.
  • Busca, G., Lietti, L., and Ramis, G., 1998, Chemical and mechanistic aspects of the selective catalytic reduction of NOx, by ammonia over oxide catalysts: A review: Applied Catalysis B: Environmental, v. 18, p. 1–36.
  • Cao, Y., Chen, B., Wu, J., Cui, H., Smith, J., Chen, C.K., Chu, P., and Pan, W.P., 2007, Study of mercury oxidation by a selective catalytic reduction catalyst in a pilot-scale slipstream reactor at a utility boiler burning bituminous coal: Energy & Fuels, v. 21, p. 145–156. doi:10.1021/ef0602426
  • Cao, Y., Gao, Z.Y., Zhu, J.S., Wang, Q.H., Huang, Y.J., Chiu, C.C., Parker, B., Chu, P., and Pan, W.P., 2008, Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal: Environmental Science & Technology, v. 42, p. 256–261. doi:10.1021/es071281e
  • Chang, J.C.S., and Ghorishi, S.B., 2003, Simulation and evaluation of elemental mercury concentration increase in flue gas across a wet scrubber: Environmental Science & Technology, v. 37, p. 5763–5766. doi:10.1021/es034352s
  • Chen, J.C., and Wey, M.Y., 1996, The effect of operating conditions on the capture of metals with limestone during incineration: Environment International, v. 22, p. 743–752. doi:10.1016/S0160-4120(96)00066-9
  • Chen, J.C., Wey, M.Y., and Lin, Y.C., 1998, The adsorption of heavy metals by different sorbents under various incineration conditions: Chemosphere, v. 37, p. 2262–2617. doi:10.1016/S0045-6535(98)00161-1
  • Chen, J.F., 2013, Dry dearsenic by Cao/γ-Al2O3 adsorbent during coal combustion: Journal of Huazhong Normal University (Natural Sciences), v. 47, p. 519–522.
  • Chen, J.F., and Shuai, Q., 2012, Study of simultaneous dearsenic and desulfurization by calcium-based materials during coal combustion: Journal of Hefei University of Technology (Natural Science), v. 35, p. 112–115.
  • Cheng, J.F., Han, J., Liu, Y.H., Zeng, H.C., Xu, M.H., and Luo, K.L., 2001a, Effect of air staging with absorbents on trace metal during coal combustion: Environmental Science, v. 22, p. 34–38. in Chinese with English abstract
  • Cheng, J.F., Zeng, H.C., Zhang, Z.H., and Xu, M.H., 2001b, The effects of solid absorbents on the emission of trace elements, SO2, and NOx during coal combustion: International Journal of Energy Research, v. 25, p. 1043–1052. doi:10.1002/(ISSN)1099-114X
  • Cheng, S.P., 2003, Heavy metal pollution in China: Origin, pattern, and control: Environmental Science and Pollution Research, v. 10, p. 192–198. doi:10.1065/espr2002.11.141.1
  • China Coal Geology Bureau, 1996, Atlas of coal resources in major coal mines of China: Internal data of China Coal Geology Bureau, Beijing, China.
  • Cimino, S., and Scala, F., 2016, Removal of elemental mercury by MnOx catalysts supported on TiO2 or Al2O3: Industrial & Engineering Chemistry Research, v. 55, p. 5133–5138. doi:10.1021/acs.iecr.5b04147
  • Clarke, L.B., and Sloss, L.L., 1992, Trace elements - emissions from coal combustion and gasification: IEA Coal Research, London.
  • Clemens, A.H., Damiano, L.F., Gong, D., and Matheson, T.W., 1999, Partirioning behaviour of some toxic volatile elements during stoker and fluidised bed combustion of alkaline sub-bituminous: Fuel, v. 78, p. 1379–1385. doi:10.1016/S0016-2361(99)00066-6
  • Córdoba, P., Font, O., Lzquierdo, M., Querol, X., Leiva, C., Lopez-Anton, M.A., Diaz-Somoano, M., Martinez-Tarazona, M.R., Ochoa-Gonzalez, R., Fernandez, C., and Gomez, P., 2012b, The retention capacity for trace elements by the flue gas desulphurisation system under operational conditions of a co-combustion power plant: Fuel, v. 102, p. 773–788. doi:10.1016/j.fuel.2012.06.059
  • Córdoba, P., Ochoa-Gonzalez, R., Font, O., Lzquierdo, M., Querol, X., Leiva, C., Lopez-Anton, M.A., Diaz-Somoano, M., Martinez-Tarazona, M., Fernandez, C., and Tomas, A., 2012a, Partitioning of trace inorganic elements in a coal-fired power plant equipped with a wet flue gas desulphurisation system: Fuel, v. 92, p. 145–157. doi:10.1016/j.fuel.2011.07.025
  • Dai, S., Graham, I.T., and Ward, C.R., 2016b, A review of anomalous rare earth elements and yttrium in coal: International Journal of Coal Geology, v. 159, p. 82–95. doi:10.1016/j.coal.2016.04.005
  • Dai, S., Li, W., Tang, Y., Zhang, Y., and Feng, P., 2007, The sources, pathway, and preventive measures for fluorosis in Zhijin County, Guizhou, China: Applied Geochemistry, v. 22, p. 1017–1024. doi:10.1016/j.apgeochem.2007.02.011
  • Dai, S., and Ren, D., 2006, Fluorine concentration of coals in China—An estimation considering coal reserves: Fuel, v. 85, p. 929–935. doi:10.1016/j.fuel.2005.10.001
  • Dai, S., Ren, D., Chou, C.L., Finkelman, R.B., Seredin, V.V., and Zhou, Y.P., 2012a, Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization: International Journal of Coal Geology, v. 94, p. 3–21. doi:10.1016/j.coal.2011.02.003
  • Dai, S., Ren, D., and Ma, S., 2004, The cause of endemic fluorosis in western Guizhou Province, Southwest China: Fuel, v. 83, p. 2095–2098. doi:10.1016/j.fuel.2004.03.016
  • Dai, S., Ren, D., and Tang, Y., 2005, Modes of occurrence of major elements in coal and their study significance: Coal Geoglogy & Exploration, v. 33, p. 1–5. in Chinese with English abstract
  • Dai, S., Ren, D., Zhou, Y., Chou, C.L., Wang, X., Zhao, L., and Zhu, X., 2008, Mineralogy and geochemistry of a superhigh-organic-sulfur coal, Yanshan Coalfield, Yunnan, China: Evidence for a volcanic ash component and influence by submarine exhalation: Chemical Geology, v. 255, p. 182–194. doi:10.1016/j.chemgeo.2008.06.030
  • Dai, S., Seredin, V.V., Ward, C.R., Hower, J.C., Xing, Y., Zhang, W., Song, W., and Wang, P., 2015, Enrichment of U–Se–Mo–Re–V in coals preserved within marine carbonate successions: Geochemical and mineralogical data from the Late Permian Guiding coalfield, Guizhou, China: Mineralium Deposita, v. 50, p. 159–186. doi:10.1007/s00126-014-0528-1
  • Dai, S., Seredin, V.V., Ward, C.R., Jiang, J., Hower, J.C., Song, X., Jiang, Y., Wang, X., Gornostaeva, T., Li, X., Liu, H., Zhao, L., and Zhao, C., 2014a, Composition and modes of occurrence of minerals and elements in coal combustion products derived from high-Ge coals: International Journal of Coal Geology, v. 121, p. 79–97. doi:10.1016/j.coal.2013.11.004
  • Dai, S., Wang, X., Seredin, V.V., Hower, J.C., Ward, C.R., O’Keefe, J.M.K., Huang, W., Li, T., Li, X., Liu, H., Xue, W., and Zhao, L., 2012b, Petrology, mineralogy, and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit, Inner Mongolia, China: New data and genetic implications: International Journal of Coal Geology, v. 90–91, p. 72–99. doi:10.1016/j.coal.2011.10.012
  • Dai, S., Yan, X., Ward, C.R., Hower, J.C., Zhao, L., Wang, X., Zhao, L., Ren, D., and Finkelman, R.B., 2016a, Valuable elements in Chinese coals: A review: International Geology Review, p. 1–31. doi:10.1080/00206814.2016.1197802
  • Dai, S., Zhang, W., Seredin, V.V., Ward, C.R., Hower, J.C., Wang, X., Li, X., Song, W., Zhao, L., Kang, H., Zheng, L., and Zhou, D., 2013, Factors controlling geochemical and mineralogical compositions of coals preserved within marine carbonate successions: A case study from the Heshan coalfield, southern China: International Journal of Coal Geology, v. 109–110, p. 77–100. doi:10.1016/j.coal.2013.02.003
  • Dai, S., Zhao, L., Hower, J.C., Johnston, M.N., Song, W., Wang, P., and Zhang, S., 2014b, Petrology, mineralogy, and chemistry of size-fractioned fly ash from the Jungar power plant, Inner Mongolia, China, with emphasis on the distribution of rare earth elements: Energy and Fuels, v. 28, p. 1502–1514. doi:10.1021/ef402184t
  • Dai, S., Zhao, L., Peng, S., Chou, C.-L., Wang, X., Zhang, Y., Li, D., and Sun, Y., 2010, Abundances and distribution of minerals and elements in high-alumina coal fly ash from the Jungar power plant, inner Mongolia, China: International Journal of Coal Geology, v. 81, p. 320–332. doi:10.1016/j.coal.2009.03.005
  • De, M., Azargohar, R., Dalai, A.K., and Shewchuk, S.R., 2013, Mercury removal by bio-char based modified activated carbons: Fuel, v. 103, p. 570–578. doi:10.1016/j.fuel.2012.08.011
  • Deng, S., Liu, Y., Zhang, C., Wang, X.F., Cao, Q., Wang, H.M., and Zhang, F., 2014, Fluorine emission of pulverized coal-fired power plants in China: Research of Environmental Sciences, v. 27, p. 225–231.
  • Diamantopoulou, I., Skodras, G., and Sakellaropoulos, G.P., 2010, Sorption of mercury by activated carbon in the presence of flue gas components: Fuel Processing Technology, v. 91, p. 158–163. doi:10.1016/j.fuproc.2009.09.005
  • Ding, F., Zhao, Y.C., Mi, L.L., Li, H.L., Li, Y., and Zhang, J.Y., 2012, Removal of gas-phase elemental mercury in flue gas by inorganic chemically promoted natural mineral sorbents: Industrial & Engineering Chemistry Research, v. 51, p. 3039–3047. doi:10.1021/ie202231r
  • Ding, Z.Y., Li, L., Wade, A.D., and Gloyna, E.F., 1998, Supercritical water oxidation of NH3 over a MnO2/CeO2 catalyst: Industrial & Engineering Chemistry Research, v. 37, p. 1707–1716. doi:10.1021/ie9709345
  • Dranga, B.A., Li, L., and Koeser, H., 2012, Oxidation catalysts for elemental mercury in flue gases—A review: Focus on Catalysts, v. 2, p. 139–170. doi:10.3390/catal2010139
  • Duan, J., and Tan, J., 2013, Atmospheric heavy metals and arsenic in China: Situation, sources and control policies: Atmospheric Environment, v. 74, p. 93–101. doi:10.1016/j.atmosenv.2013.03.031
  • Duan, Y., Jiang, Y., Yang, L., and Wang, Y., 2008, Experimental study on mercury emission and adsorption in circulating fluidized bed boiler: Proceedings of the CSEE, v. 28, p. 1–5.
  • Dunham, G.E., DeWall, R.A., and Senior, C.L., 2003, Fixed-bed studies of the interactions between mercury and coal combustion fly ash: Fuel Processing Technology, v. 82, p. 197–213. doi:10.1016/S0378-3820(03)00070-5
  • Eswaran, S., and Stenger, H.G., 2005, Understanding mercury conversion in selective catalytic reduction (SCR) catalysts: Energy & Fuels, v. 19, p. 2328–2334. doi:10.1021/ef050087f
  • Eswaran, S., and Stenger, H.G., 2008, Effect of halogens on mercury conversion in SCR catalysts: Fuel Processing Technology, v. 89, p. 1153–1159. doi:10.1016/j.fuproc.2008.05.007
  • Eswaran, S., Stenger, H.G., and Fan, Z., 2007, Gas-phase mercury adsorption rate studies: Energy & Fuels, v. 21, p. 852–857. doi:10.1021/ef060276d
  • Feng, Y.W., Ogura, N., Feng, Z.W., Zhang, F.Z., and Shimizu, H., 2003, The concentrations and sources of fluoride in atmospheric depositions in Beijing, China: Waste Air & Soil Pollution, v. 145, p. 95–107. doi:10.1023/A:1023680112474
  • Fierro, V., Muñiz, G., Gonzalez-Sánchez, G., Ballinas, M.L., and Celzard, A., 2009, Arsenic removal by iron-doped activated carbons prepared by ferric chloride forced hydrolysis: Journal of Hazardous Materials, v. 168, p. 430–437. doi:10.1016/j.jhazmat.2009.02.055
  • Finkelman, R.B., Orem, W., Castranova, V., Tatu, C.A., Belkin, H.E., Zheng, B., Lerch, H.E., Maharaj, S.V., and Bates, A.L., 2002, Health impacts of coal and coal use: Possiblesolutions: International Journal of Coal Geology, v. 50, p. 425–443. doi:10.1016/S0166-5162(02)00125-8
  • Finkelman, R.B., Palmer, C.A., Krasnow, M.R., Aruscavage, P.J., Sellers, G.A., and Dulong, F.T., 1990, Combustion and leaching behavior of elements in the argonne premium coal samples: Energy & Fuels, v. 4, p. 755–766. doi:10.1021/ef00024a024
  • Fuente-Cuesta, A., Diaz-Somoano, M., Lopez-Anton, M.A., Cieplik, M., Fierro, J.L.G., and Martinez-Tarazona, M.R., 2012, Biomass gasification chars for mercury capture from a simulated flue gas of coal combustion: Journal of Environmental Management, v. 98, p. 23–28. doi:10.1016/j.jenvman.2011.12.013
  • Gao, H.L., Wang, X.Y., Zhou, J.S., and Luo, Z.Y., 2007, The influence of ESP on mercury emission from coal-fired power plant: Boiler Technology, v. 38, p. 63–67.
  • Gao, W., Zhi, G.R., and Xue, Z.G., 2013, Analysis of atmospheric emission trends of mercury, lead and arsenic from coal combustion in china from 1980-2007: Research of Environmental Sciences, v. 26, p. 822–828.
  • Ghorishi, S.B., Singer, C.F., Jozewicz, W.S., and Srivastava, R.K., 2002, Simultaneous control of Hg°, SO2, and NOx by novel oxidized calcium-based sorbents: Journal of Air & Waste Management Association, v. 52, p. 273–278. doi:10.1080/10473289.2002.10470786
  • Gibb, W.H., Clarke, F., and Mehta, A.K., 2000, The fate of coal mercury during combustion: Fuel Processing Technology, v. 65-66, p. 365–377. doi:10.1016/S0378-3820(99)00104-6
  • Guo, X., Zheng, C., Jia, X., and Sun, T., 2003, The behaviour of mercury, arsenic, selenium during coal combustion: Journal of Engineering Thermophysics, v. 24, p. 703–706.
  • Guo, X., Zheng, C., and Jia, X., 2004a, Studies on characteristics of mercury and arsenic distribution in combustion products at the coal-fired utility boiler: Journal of Engineering Thermophysics, v. 25, p. 714–716.
  • Guo, X., Zheng, C., Jia, X., Lin, Z., and Liu, Y., 2004b, Study on mercury speciation in pulverized coal fired flue gas: Proceedings of CSEE, v. 24, p. 185–188.
  • Guo, X., Zheng, C., and Xu, M., 2004c, Characterization of arsenic emissions from a coal-fired power plant: Energy & Fuels, v. 18, p. 1822–1826. doi:10.1021/ef049921b
  • Ho, T.C., Chuang, T.C., Chelluri, S., Lee, Y., and Hopper, J.R., 2001, Simultaneous capture of metal, sulfur and chlorine by sorbents during fluidized bed incineration: Waste Management, v. 21, p. 435–441. doi:10.1016/S0956-053X(00)00135-5
  • Hower, J.C., Senior, C.L., Suuberg, E.M., Hurt, R.H., Wilcox, J.L., and Olson, E.S., 2010, Mercury capture by native fly ash carbons in coal-fired power plants: Progress Energy Combustion Science, v. 36, p. 510–529. doi:10.1016/j.pecs.2009.12.003
  • Hower, J.C., Groppo, J.G., Joshi, P., Dai, S., Moecher, D.P., and Johnston, M.N., 2014, Location of cerium in coal-combustion fly ashes: Implications for recovery of lanthanides: Coal Combustion and Gasification Products, v. 5, p. 73–78. doi:10.4177/CCGP-D13-00007.1
  • Hower, J.C., Groppo, J.G., Henke, K.R., Hood, M.M., Eble, C.F., Honaker, R.Q., Zhang, W., and Qian, D., 2015, Notes on the potential for the concentration of rare earth elements and yttrium in coal combustion fly ash: Minerals, v. 5, no. 2, p. 356–366. doi:10.3390/min5020356
  • Hower, J.C., and Dai, S., 2016, Petrology and chemistry of sized Pennsylvania anthracite, with emphasis on the distribution of rare earth elements: Fuel, v. 185, p. 305–315. doi:10.1016/j.fuel.2016.07.055
  • Hower, J.C., Granite, E.J., Mayfield, D.B., Lewis, A.S., and Finkelman, R.B., 2016, Notes on contributions to the science of rare earth element enrichment in coal and coal combustion by-products: Minerals, v. 6, no. 2, p. 32. doi:10.3390/min6020032
  • Hower, J.C., Groppo, J.G., Graham, U.M., Ward, C.R., Kostova, I.J., Maroto-Valer, M.M., and Dai, S., 2017, Coal-derived unburned carbons in fly ash: A review: International Journal of Coal Geology, v. 179, p. 11–27. doi:10.1016/j.coal.2017.05.007
  • Hu, C.X., Zhou, J.S., He, S., Zhang, L., Zheng, J.M., Luo, Z.Y., and Cen, K.F., 2009, Influence and control of electrostatic precipitators and wet flue gas desulfurization systems on the speciation of mercury in flue gas: Journal of Power Engineering, v. 29, p. 400–404.
  • Hu, C.X., Zhou, J.S., He, S., Zheng, J., Luo, Z.Y., and Cen, K.F., 2008, Influence of chlorine and ash on flue gas mercury speciation of large scale coal-fired boilers: Journal of Power Engineering, v. 28, p. 946–948.
  • Huang, Y., Jin, B., Zhong, Z., Xiao, R., Tang, Z., and Ren, H., 2004, Trace elements (Mn, Cr, Pb, Se, Zn, Cd and Hg) in emissions from a pulverized coal boiler: Fuel Processing Technology, v. 86, p. 23–32. doi:10.1016/j.fuproc.2003.10.022
  • Huang, Z.J., Duan, Y.F., Wang, Y.J., Meng, S.L., and Jiao, Y.G., 2009, Experimental investigation on absorption of Hg in simulated flue gas by modified Ca(OH)2: Proceedings of CSEE, v. 17, p. 56–62.
  • Huang, Z.J., Duan, Y.F., Wang, Y.J., Meng, S.L., and Jiao, Y.G., 2011, Simulation of mercury emission control by calcium-based sorbent under fixed-bed operations: Boiler Technology, v. 42, p. 65–69.
  • Jadhav, R.A., Agnihotri, R., Gupta, H., and Fan, L.S., 2000, Mechanism of selenium sorption by activated carbon: Canadian Journal of Chemical Engineering, v. 78, p. 168−174. doi:10.1002/cjce.5450780122
  • James, D., Kilgroe, C.B., and Sedman, R.K., 2002, Control of mercury emissions from coal-fired electric utility boilers. Interim Report. EPA-600.
  • Jurng, J., Lee, T.G., Lee, G.W., Lee, S.J., Kim, B.H., and Seier, J., 2002, Mercury removal from incineration flue gas by organic and inorganic adsorbents: Chemosphere, v. 47, p. 907–913. doi:10.1016/S0045-6535(01)00329-0
  • Kamata, H., Ueno, S.-I., Naito, T., and Yukimura, A., 2008, Mercury oxidation over the V2O5(WO3)/TiO2 commercial SCR catalyst: Industrial & Engineering Chemistry Research, v. 47, p. 8136–8141. doi:10.1021/ie800363g
  • Kang, C.M., Gupta, T., Ruiz, P.A., Wolfson, J.M., Ferguson, S.T., Lawrence, J.E., Rohr, A.C., Godleski, J., and Koutrakis, P., 2011, Aged particles derived from emissions of coal-fired power plants: the teresa field results: Inhalation Toxicology, v. 23, p. 11–30.
  • Ketris, M.P., and Yudovich, Y.E., 2009, Estimations of clarkes for carbonaceous biolithes: World averages for trace element contents in black shales and coals: International Journal of Coal Geology, v. 78, p. 135–148. doi:10.1016/j.coal.2009.01.002
  • Kuo, J.H., Lin, C.L., and Wey, M.Y., 2011, Effect of particle agglomeration on heavy metals adsorption by Al- and Ca-based sorbents during fluidized bed in cineration: Fuel Processing Technology, v. 92, p. 2089–2098. doi:10.1016/j.fuproc.2011.06.014
  • Lee, S., Seo, Y., Jang, H., Park, K., Baek, J., An, H., and Song, K., 2006a, Speciation and mass distribution of mercury in a bituminous coal-fired power plant: Atmospheric Environment, v. 40, p. 2215–2224. doi:10.1016/j.atmosenv.2005.12.013
  • Lee, S.H., Rhim, Y.J., Cho, S.P., and Baek, J.I., 2006b, Carbon-based novel sorbent for removing gas-phase mercury: Fuel, v. 85, p. 219–226. doi:10.1016/j.fuel.2005.02.030
  • Lei, C., Duan, Y., Zhuo, Y., Yang, L., Zhang, L., Yang, X., Yao, Q., Jiang, Y., and Xu, X., 2007, Mercury transformation across particulate control devices in six power plants of china: the co-effect of chlorine and ash composition: Fuel, v. 86, p. 603–610.
  • Lee, C.W., Serre, S.D., Zhao, Y., Lee, S.J., and Hastings, T.W., 2008, Mercury oxidation promoted by a selective catalytic reduction catalyst under simulated powder river basin coal combustion conditions: Journal of the Air & Waste Management Association, v. 58, p. 484-493.
  • Li, H., Li, Y., Wu, C.Y., and Zhang, J., 2011, Oxidation and capture of elemental mercury over SiO2–TiO2–V2O5 catalysts in simulated low-rank coal combustion flue gas: Chemical Engineering Journal, v. 169, p. 186–193. doi:10.1016/j.cej.2011.03.003
  • Li, J., Zhuang, X., Querol, X., Font, O., Moreno, N., and Zhou, J., 2012, Environmental geochemistry of the feed coals and their combustion by-products from two coal-fired power plants in Xinjiang Province, Northwest China: Fuel, v. 95, p. 446–456. doi:10.1016/j.fuel.2011.10.025
  • Li, J.F., Yan, N.Q., Qu, Z., Qiao, S.H., Yang, S.J., Guo, Y.F., Liu, P., and Jia, J.P., 2010, Catalytic oxidation of elemental mercury over the modified catalyst Mn/α-Al2O3 at lower temperature: Environmental Science & Technology, v. 44, p. 426–431. doi:10.1021/es9021206
  • Li, X.L., Sun, H.C., Duan, L.B., and Zhao, C.S., 2016, Influence of different additives/adsorbents on migration of trace elements in circulating fluidized bed combustion: Journal of Combustion Science and Technology (Chinese, Abstract in English),  v. 22, p. 45–49
  • Li, Y., Murphy, P.D., Wu, C.Y., Powers, K.W., and Bonzongo, J.J., 2008, Development of silica-vanadia-titania catalysts for removal of elemental mercury from coal-combustion flue gas: Environmental Science & Technology, v. 42, p. 5304–5309. doi:10.1021/es8000272
  • Li, Y., Tong, H., Zhuo, Y., Chen, C., and Xu, X., 2006a, Simultaneous removal of SO2 and trace SeO2 from flue gas: Effect of product layer on mass transfer: Environmental Science & Technology, v. 40, p. 4306−4311.
  • Li, Y., Tong, H., Zhuo, Y., Wang, S., and Xu, X., 2006b, Simultaneous removal of SO2 and trace SeO2 from flue gas: Effect of SO2 on selenium capture and kinetics study: Environmental Science & Technology, v. 40, p. 7919−7924.
  • Li, Y.Z., Tong, H.L., Li, Y., Gao, Y.X., and Xu, X.C., 2007, Effect of CO2 on trace selenium adsorption by CaO from flue gas: Journal of Tsinghua University (Science and Technology), v. 47, p. 699–702.
  • Li, Z., Clemens, A.H., Moore, T.A., Gong, D., Weaver, S.D., and Eby, N., 2005, Partitioning behaviour of trace elements in a stoker-fired combustion unit: An example using bituminous coals from the Greymouth coalfield (Cretaceous), New Zealand: International Journal of Coal Geology, v. 63, p. 98–116. doi:10.1016/j.coal.2005.02.007
  • Li, Z.C., Duan, Y.F., Wang, Y.J., Huang, Z.J., Meng, S.L., and Shen, X.Z., 2013, Mercury removal by ESP and WESP in a 300 MW coal-fired power plant: Journal of Fuel Chemistry & Technology, v. 41, p. 491–498.
  • Lim, D.H., and Wilcox, J., 2013, Heterogeneous mercury oxidation on Au (111) from first principles: Environmental Science & Technology, v. 47, p. 8515–8522. doi:10.1021/es400876e
  • Linak, W.P., and Miller, C.A., 2000, Comparison of particle size distributions and elemental partitioning from the combustion of pulverized coal and residual fuel oil, Journal Of The Air & Waste Management Association, v. 50, p. 1532–1544.
  • Liu, G.J., Zhang, H.Y., Gao, L.F., Zheng, L.G., and Peng, Z.C., 2004, Petrological and mineralogical characterizations and chemical composition of coal ashes from power plants in Yanzhou mining district, China: Fuel Processing Technology, v. 85, p. 1635–1646. doi:10.1016/j.fuproc.2003.10.028
  • Liu, J., Yang, Z., Yan, X., Ji, D., Yang, Y., and Hu, L., 2015, Modes of occurrence of highly-elevated trace elements in superhigh-organic-sulfur coals: Fuel, v. 156, p. 190–197. doi:10.1016/j.fuel.2015.04.034
  • Liu, Z.S., 2007, Control of heavy metals during incineration using activated carbon fibers: Journal of Hazardous Materials, v. 142, p. 506–511. doi:10.1016/j.jhazmat.2006.08.055
  • Liu, Y., Wei, H.M., Xu, J.R., Zhou, J.H., and Cen, K.F., 2008, Effect Of O2/co2 And Air On Mercury Speciation In Coal Fired Flue Gases: Proceedings Of Csee, v. 28, p. 48–53. [ in Chinese with English abstract.]
  • Liu, X., and Jiang, Y., 2009, Development and status of mercury control technologies in American coal-fired power plants: High-Technology & Industrialization, v. 5, p. 92–95.
  • Lockwood, F.C., and Yousif, S., 2000, A model for the particulate matter enrichment with toxic metals in solid fuel flames: Fuel Processing Technology, v. 65-66, p. 439–457. doi:10.1016/S0378-3820(99)00109-5
  • López-Antón, M.A., Abad-Valle, P., Díaz-Somoano, M., Suarez-Ruiz, I., and Martinez-Tarazona, M.R., 2009, The influence of carbon particle type in fly ashes on mercury adsorption: Fuel, v. 88, p. 1194–1200. doi:10.1016/j.fuel.2007.07.029
  • López-Antón, M.A., Díaz-Somoano, M., Abad-Valle, P., and Martinez-Tarazona, M.R., 2007a, Mercury and selenium retention in fly ashes: Influence of unburned particle content: Fuel, v. 86, p. 2064–2070. doi:10.1016/j.fuel.2007.03.031
  • López-Antón, M.A., Díaz-Somoano, M., Fierro, J.L.G., and Martinez-Tarazona, M.R., 2007b, Retention of arsenic and selenium compounds present in coal combustion and gasification flue gases using activated carbons: Fuel Processing Technology, v. 88, p. 799–805. doi:10.1016/j.fuproc.2007.03.005
  • Lu, J., Chen, X., Duan, L., and Zhou, W., 2009a, Experimental study of trace element migration characteristics in an O2/CO2 atmosphere: Journal of Engineering for Thermal Energy & Power, v. 24, p. 648–651.
  • Lu, P., Wu, J., and Pan, W., 2009b, Mercury emission and its speciation from flue gas of a 860 MW pulverized coal-fired boiler: Journal of Power Engineering, v. 29, p. 1067–1072.
  • Lu, X.D., Yu, L.Y., and Zhang, J., 2004, Study on control with absorbents on trace elements during fluidized bed combustion: Proceedings of the CSEE, v. 24, p. 192–197.
  • Mahuli, S., Agnihotri, R., Chauk, S., Ghosh-Dastidar, A.,  and Fan, L.-S., 1997, Mechanism of arsenic sorption by hydrated lime: Environmental Science & Technology, v. 31, p. 3226-3231.
  • Mao, D.J., Su, H.C., and Yan, L.R., 1990, An epidemiologic investigation on selenium poisoning in southwestern Hubei Province: Chinese Journal of Epidemiology, v. 9, p. 311–314
  • Martinez-Tarazona, M.R., and Spears, D.A., 1996, The fate of trace elements and bulk minerals in pulverized coal combustion in a power station: Fuel Processing Technology, v. 47, p. 79–92. doi:10.1016/0378-3820(96)01001-6
  • Mei, Z.J., Fan, M.H., Zhang, R.Q., Shen, Z.M., and Wang, W.H., 2014, The effect of nitrogen doping on mercury oxidation/chemical adsorption on the CuCo2O4 (110) surface: A molecular-level description: Physical Chemistry Chemical Physics, v. 16, p. 13508–13516. doi:10.1039/C4CP01362J
  • Meng, S.L., Duan, Y.F., Huang, Z.J., Wang, Y.J., and Yang, L.G., 2011, Experimental study on characteristics of mercury removal by ESP and FF fly ash: Boiler Technology, v. 42, p. 70–74.
  • Monahan-Pendergast, M.T., Przybylek, M., Lindblad, M., and Wilcoxet, J., 2008, Theoretical predictions of arsenic and selenium species under atmospheric conditions: Atmospheric Environment, v. 42, p. 2349–2357. doi:10.1016/j.atmosenv.2007.12.028
  • National Bureau of Statistics of People’s Republic of China, 2015, China statistical yearbook, March 2015, China Statistics Press: Beijing, China.
  • Negreira, A.S., and Wilcox, J., 2013, Role of WO3 in the Hg oxidation across the V2O5–WO3–TiO2 SCR catalyst: A DFT study: The Journal of Physical Chemistry C, v. 117, p. 24397–24406. doi:10.1021/jp407794g
  • Negreira, A.S., and Wilcox, J., 2014, Uncertainty analysis of the mercury oxidation over a standard SCR catalyst through a lab-scale kinetic study: Energy & Fuels, v. 29, p. 369–376. doi:10.1021/ef502096r
  • Ng, J.C., Wang, J.P., and Shraim, A., 2003, A global health problem caused by arsenic from natural sources: Chemosphere, v. 52, p. 1353–1359. doi:10.1016/S0045-6535(03)00470-3
  • Pan, W.G., Wu, J., Wang, W.H., He, P., Zhang, Y.D., Leng, X.F., and Shen, M.Q., 2009, Study on the effect of NH4Cl addition on Hg and NO produced by coal combustion: Proceedings of the CSEE, v. 29, p. 41–46.
  • Pavlish, J.H., Sondreal, E.A., Mann, M.D., Olson, E.S., Galbreath, K.C., Laudal, D.L., and Benson, S.A., 2003, Status review of mercury control options for coal-fired power plants: Fuel Processing Technology, v. 82, p. 89–165. doi:10.1016/S0378-3820(03)00059-6
  • Poulston, S., Granite, E.J., Pennline, H.W., Hamilton, H., and Smith, A.W.J., 2011, Palladium based sorbents for high temperature arsine removal from fuel gas: Fuel, v. 90, p. 3118–3121. doi:10.1016/j.fuel.2011.05.012
  • Prestbo, E.M., and Bloom, N.S., 1995, Mercury speciation adsorption (MESA) method for combustion flue gas: Methodology, artifacts, intercomparison, and atmospheric implications: Water Air & Soil Pollution, v. 80, p. 145–158. doi:10.1007/BF01189663
  • Presto, A.A., and Granite, E.J., 2006, Survey of catalysts for oxidation of mercury in flue gas: Environmental Science & Technology, v. 40, p. 5601–5609. doi:10.1021/es060504i
  • Qi, C.C., Liu, G.J., Chou, C.L., and Zheng, L.G., 2008, Environmental geochemistry of antimony in Chinese coals: Science of the Total Environment, v. 389, p. 225–234. doi:10.1016/j.scitotenv.2007.09.007
  • Qi, G., Yang, R.T., and Chang, R., 2004, MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures: Applied Catalysis B: Environmental, v. 51, p. 93–106. doi:10.1016/j.apcatb.2004.01.023
  • Qi, Q.J., Liu, J.Z., Cao, X.Y., Zhou, J.H., Zhang, S.X., and Cen, K.F., 2002b, Restraining of fluorine emission by blending CaO or lime with coal during coal combustion: Journal of Fuel Chemistry and Technology, v. 30, p. 204–208.
  • Qi, Q.J., Liu, J.Z., Cao, X.Z., Zhou, J.H., and Cen, K.F., 2002a, Fluorine distribution characteristics in coal and behavior of lueorine during coal combustion: Journal of Chemical Industry and Engineering (China), v. 53, p. 572–577.
  • Qi, Q.J., Wu, X., Liu, J.Z., Yu, H., Zhou, J.H., and Cen, K.F., 2005a, Experimental on fluorine emission characteristics and influence factors during coal combustion (Ⅱ): Journal of Liaoning Technical University, v. 24, p. 465–468.
  • Qi, Q.J., Wu, X., Liu, J.Z., Yu, H., Zhou, J.H., and Cen, K.F., 2005b, Experimental research on fluorine emission characteristics and influence factors during coal combustion (Ⅱ): Journal of Liaoning Technical University, v. 24, p. 625–628.
  • Qi, Q.J., Yu, G.S., Zhang, H., Liu, J.Z., and Cen, K.F., 2006, Experimental research on fluorine retention of alkaline-earth metal compounds during coal combustion: Journal of Liaoning Technical University, v. 25, p. 801–803.
  • Ren, D.Y., Zhao, F.H., Dai, S.F., Zhang, J.Y., and Luo, K.L., 2006a, Geochemistry of trace elements in coals, Science Press: Beijing, China.
  • Ren, J., Zhou, J., Luo, Z., and Cen, K., 2002, Study of mercury emission during coal combustion: Acta Scientiae Circumstantiae, v. 22, p. 289–293.
  • Ren, J.L., Zhou, J.S., Luo, Z.Y., Xu, Z., and Zhang, X.M., 2006b, Ca-based sorbents for mercury vapor removal from flue gas: Journal of Fuel Chemistry & Technology, v. 34, p. 557–561.
  • Rizeq, R.G., Hansell, D.W., and Seeker, R.W., 1994a, Predictions of metals emissions and partitioning in coal-fired combustion systems: Fuel, v. 39, p. 219–233.
  • Rizeq, R.G., Hansell, D.W., and Seeker, W.R., 1994b, Predictions of metal emissions and partitioning in coal-fired combustion systems: Fuel Processing Technology, v. 39, p. 219–236. doi:10.1016/0378-3820(94)90181-3
  • Rupp, E.C., Granite, E.J., and Stanko, D.C., 2013, Laboratory scale studies of Pd/γ-Al2O3 sorbents for the removal of trace contaminants from coal-derived fuel gas at elevated temperatures: Fuel, v. 108, p. 131–136. doi:10.1016/j.fuel.2010.12.013
  • Rupp, E.C., and Wilcox, J., 2014, Mercury chemistry of brominated activated carbons–packed-bed breakthrough experiments: Fuel, v. 117, p. 351–353. doi:10.1016/j.fuel.2013.09.017
  • Sakulpitakphon, T., Hower, J.C., Trimble, A.S., Schram, W.H., and Thomas, G.A., 2003, Arsenic and mercury partitioning in fly ash at a kentucky power plant: Energy & Fuels, v. 17, p. 1028–1033.
  • Scala, F., Chirone, R., and Lancia, A., 2011, Elemental mercury vapor capture by powdered activated carbon in a fluidized bed reactor: Fuel, v. 90, p. 2077–2082. doi:10.1016/j.fuel.2011.02.042
  • Seames, W.S., and Wendt, J.O.L., 2000, Partitioning of arsenic, selenium, and cadmium during the combustion of pittsburgh and illinois #6 coals in a self-sustained combustor: Fuel Processing Technology, v. 63, p. 179–196.
  • Senior, C., Blythe, G., and Chu, P., 2011, Multi-media emissions of selenium from coal-fired electric utility bolilers: ADA-ES Inc Report , Arlington.
  • Senior, C.L., 2006, Oxidation of mercury across selective catalytic reduction catalysts in coal-fired power plants: Journal of the Air & Waste Management Association, v. 56, p. 23–31. doi:10.1080/10473289.2006.10464437
  • Senior, C.L., Sarofim, A.F., Zeng, T., Helble, J.J., and Mamani-Paco, R., 2000, Gas-phase transformations of mercury in coal-fired power plants: Fuel Processing Technology, v. 63, p. 197–213.
  • Seredin, V.V., 2012, From coal science to metal production and environmental protection: A new story of success: International Journal of Coal Geology, v. 90–91, p. 1–3. doi:10.1016/j.coal.2011.11.006
  • Seredin, V.V., and Dai, S., 2012, Coal deposits as potential alternative sources for lanthanides and yttrium: International Journal of Coal Geology, v. 94, p. 67–93. doi:10.1016/j.coal.2011.11.001
  • Seredin, V.V., and Dai, S., 2014, The occurrence of gold in fly ash derived from high-Ge coal: Mineralium Deposita, v. 49, p. 1–6. doi:10.1007/s00126-013-0497-9
  • Seredin, V.V., Dai, S., Sun, Y., and Chekryzhov, I.Y., 2013, Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies: Applied Geochemistry, v. 31, p. 1–11. doi:10.1016/j.apgeochem.2013.01.009
  • Shao, L., Jones, T., Gayer, R., Dai, S., Li, S., Jiang, Y., and Zhang, P., 2003, Petrology and geochemistry of the high-sulphur coals from the upper Permian carbonate coal measures in the Heshan coalfield, southern China: International Journal of Coal Geology, v. 55, p. 1–26. doi:10.1016/S0166-5162(03)00031-4
  • Shelef, M., 1995, Selective catalytic reduction of NOx with N-Free reductants: Chemical Reviews, v. 95, p. 209–225. doi:10.1021/cr00033a008
  • Sjostrom, S., Durham, M., Bustard, C.J., and Martin, C., 2010, Activated carbon injection for mercury control: Overview: Fuel, v. 89, p. 1320–1322. doi:10.1016/j.fuel.2009.11.016
  • Sliger, R.N., Going, D.J., and Kramlich, J.C., 1998, Kinetic investigation of the high-temperature oxidation of mercury by chlorine species: Proceedings of Western States Section, Seattle, WA.
  • Song, C., 1989, A brief description of the Yutangba sedimentary type selenium mineralized area in southwestern Hubei: Mineral Deposits, v. 3, p. 83–89.
  • Stanislav, V.V., 1994, Trace elements in solid waste products from coal burning at some Bulgarian thermoelectric power: Fuel, v. 73, p. 367–374. doi:10.1016/0016-2361(94)90089-2
  • Tang, Q., Liu, G., Yan, Z., and Sun, R., 2012, Distribution and fate of environmentally sensitive elements (arsenic, mercury, stibium and selenium) in coal-fired power plants at Huainan, Anhui, China: Fuel, v. 95, p. 334–339. doi:10.1016/j.fuel.2011.12.052
  • Taylor, S.R., and McLennan, S.M., 1985, The continental crust: Its composition and evolution, Blackwell, Oxford.
  • Tian, C., Zhang, J.Y., Gupta, R., and Zhao, Y.C., 2016, Emissions of arsenic in fine particles generated from a typical high arsenic coal in high temperature: Energy & Fuel, v. 30, p. 6201–6209. doi:10.1021/acs.energyfuels.6b00279
  • Tian, H.Z., Cheng, K., Wang, Y., Zhao, D., Lu, L., Jia, W.X., and Hao, J.M., 2012, Temporal and spatial variation characteristics of atmospheric emissions of Cd, Cr, and Pb from coal in China: Atmospheric Environment, v. 50, p. 157–163. doi:10.1016/j.atmosenv.2011.12.045
  • Tian, H.Z., Lu, L., Hao, J.M., Gao, J.J., Cheng, K., Liu, K.Y., Qiu, P.P., and Zhu, C.Y., 2013, A review of key hazardous trace elements in Chinese coals: Abundance, occurrence, behavior during coal combustion and their environmental impacts: Energy & Fuels, v. 27, p. 601–614. doi:10.1021/ef3017305
  • Tian, H.Z., Qu, Y.P., Wang, Y., Pan, D., and Wang, X.C., 2009, Atmospheric selenium emission inventories from coal combustion in China in 2005: China Environmental Science, v. 29, p. 1011–1015.
  • Tian, H.Z., Wang, Y., Xue, Z.G., and Cheng, K., 2010, Trend and characteristics of atmospheric emissions of Hg, As, and Se from coal combustion in China, 1980–2007: Atmospheric Chemistry & Physics, v. 10, p. 11905–11919. doi:10.5194/acp-10-11905-2010
  • Tian, H.Z., Wang, Y., Xue, Z.G., Qu, Y., Chai, F.H., and Hao, J., 2011, Atmospheric emissions estimation of Hg, As, and Se from coal-fired power plants in China, 2007: Science of the Total Environment, v. 409, p. 3078–3081. doi:10.1016/j.scitotenv.2011.04.039
  • Tronconi, E., Forzatti, P., Martin, J.P.G., and Mallogi, S., 1992, Selective catalytic removal of NOx: A mathematical model for design of catalyst and reactor: Chemical Engineering Science, v. 47, p. 2401–2406. doi:10.1016/0009-2509(92)87067-Z
  • Vejahati, F., Xu, Z., and Gupta, R., 2010, Trace elements in coal: Associations with coal and minerals and their behavior during coal utilization – A review: Fuel, v. 89, p. 904–911. doi:10.1016/j.fuel.2009.06.013
  • Wang, C., Liu, X., Xu, Y., Wu, J., Wang, J., Xu, M., Lin, X., Li, H., and Xia, Y., 2013a, Distribution characteristics of minor and trace elements in fine particulate matters from a 660MW coal-fired boiler: CIESC Journal, v. 64, p. 2975–2981.
  • Wang, C., Liu, X.W., Li, D., Si, J.P., Zhao, B., and Xu, M.H., 2015a, Measurement of particulate matter and trace elements from a coal-fired power plant with electrostatic precipitators equipped the low temperature economizer: Proceedings of the Combustion Institute, v. 35, p. 2793–2800. doi:10.1016/j.proci.2014.07.004
  • Wang, G., Luo, Z., Zhang, J., and Zhao, Y., 2015b, Modes of occurrence of fluorine by extraction and SEM method in a coal-fired power plant from Inner Mongolia, China: Minerals, v. 5, p. 863–869. doi:10.3390/min5040530
  • Wang, H.W., Qi, Q.J., Wang, J.R., Liu, J.Z., Zhou, J.H., and Cen, K.F., 2014, Kinetic mechanics of thereaction between CaO and HF during coal combustion: Journal of China Coal Society, v. 39, p. 161–165.
  • Wang, L., Ju, Y.W., Liu, G.J., Chou, C.L., Zheng, L.G., and Qi, C.C., 2010a, Selenium in Chinese coals: Distribution, occurrence, and health impact: Environmental Earth Sciences, v. 60, p. 1641–1651. doi:10.1007/s12665-009-0298-8
  • Wang, M., Yang, N., Zhu, J., and Zheng, B., 2008a, Estimation of arsenic emission from coal combustion in China: Coal Conversion, v. 31, p. 1–5.
  • Wang, M.S., Zheng, B.S., Wang, B.B., Li, S.H., Wu, D.S., and Hu, J., 2006, Arsenic concentrations in Chinese coals: Science of the Total Environment, v. 357, p. 96–102. doi:10.1016/j.scitotenv.2005.04.045
  • Wang, Q., Duan, Y.F., Wu, C.J., Yang, L.G., Wang, Y.J., and Jiang, Y.M., 2008b, Demercurization property of flue gas desulphurization system in coal fired power plants: Boiler Technology, v. 39, p. 69–74.
  • Wang, Q., Liu, Y., Jia, X., Liu, J., Zhang, J., and Qiu, J., 2003, Experimental study on mercury partitioning behavior during coal comobustion: Coal Conversion, v. 26, p. 67–70.
  • Wang, Q., Shao, Q., and Zhou, C., 1998, Grain size distribution of 16 trace elements in fly ash of burning coal: Environmental Pollution & Control, v. 5, p. 37–41.
  • Wang, S., Zhang, L., Zhao, B., Meng, Y., and Hao, J., 2012, Mitigation potential of mercury emissions from coal-fired power plants in China: Energy & Fuels, v. 26, p. 4635–4642. doi:10.1021/ef201990x
  • Wang, S.M., Zhang, Y.S., Gu, Y.Z., Wang, J.W., Liu, Z., Zhang, Y., Cao, Y., Romero, C.E., and Pan, W.P., 2016, Using modified fly ash for mercury emissions control for coal-fired power plant applications in China: Fuel, v. 181, p. 1230–1237. doi:10.1016/j.fuel.2016.02.043
  • Wang, S.X., Zhang, L., Li, G.H., Hao, J.M., Pirrone, N., Sprovieri, F., and Ancora, M.P., 2010b, Mercury emission and speciation of coal-fired power plants in China: Atmospheric Chemistry and Physics, v. 10, p. 1183–1192. doi:10.5194/acp-10-1183-2010
  • Wang, Y.J., and Duan, Y.F., 2011, Effect of manganese ions on the structure of Ca(OH)2 and mercury adsorption performance of Mnx+/Ca(OH)2 composites: Energy & Fuels, v. 25, p. 1553–1558. doi:10.1021/ef200113t
  • Wang, Z., Xue, J.M., Xu, Y.Y., Wang, H.L., and Liu, J., 2013b, Research on influencing factors of SCR’s cooperative control in mercury emissions from coal-fired flue: Proceedings of the CSEE, v. 33, p. 32–37.
  • Wilcox, J., Rupp, E., Ying, S.C., Lim, D.-H., Negreira, A.S., Kirchofer, A., Feng, F., and Lee, K., 2012, Mercury adsorption and oxidation in coal combustion and gasification processes: International Journal of Coal Geology, v. 90, p. 4–20. doi:10.1016/j.coal.2011.12.003
  • Wilcox, J., 2014, Atomistic-level models, in Senior, c. and Granite E. J., Eds., Mercury control: For coal-derived gas streams, p. 389–412, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.
  • Wu, D.S., Zheng, B.S., Tang, X.Y., Li, S.H., Wang, B.B., and Wang, M.S., 2004, Fluorine in Chinese coals: Fluorine, v. 37, p. 125–132.
  • Wu, J., Pan, W., Ren, J., He, P., Wang, W., Shen, M., Leng, X., Du, Y., and Jin, Y., 2009, Mercury speciation distribution in flue gas and the influence of chloride additive on it: Journal of Power Engineering, v. 29, p. 405–408.
  • Wu, J.P., Yan, J., Liu, G.J., and Zheng, L.G., 2005, Advance of research on the distribution, mode of occurrence, and enrichment factors of chromium in Chinese coals: Bulletin of Mineralogy, Petrology and Geochemistry, v. 24, p. 239–244.
  • Xu, L., Cheng, J., and Zeng, H., 2004, Experimental inves tigation of the release characteristics of trace elements As, Cd and Cr during the combustion of coal: Journal of Engineering for Thermal Energy and Power, v. 19, p. 478–482.
  • Xu, S., Qin, S., Huang, Y., Bao, Z., and Hu, S., 2013, Se capture by a Cao-Zno composite sorbent during the combustion of se-rich stone coal: Energy & Fuels, v. 27, p. 6880–6886. doi:10.1021/ef4013449
  • Xu, W., Zeng, R., Ye, D., and Querol, X., 2005, Distributions and environmental impacts of selenium in wastes of coal from a power plant: Environmental Science, v. 26, p. 64–68.
  • Xu, Y.Y., Xue, J.M., Wang, H.L., Li, B., Guan, Y.M., and Liu, J., 2014, Research on mercury collaborative control by conventional pollutants purification facilities of coal-fired power plants: Proceedings of the CSEE, v. 34, p. 3924–3931.
  • Yan, R., Gauthier, D., and Flamant, G., 2001, Volatility and chemistry of trace elements in a coal: Fuel, v. 80, p. 2217–2226. doi:10.1016/S0016-2361(01)00105-3
  • Yang, J., Zhao, Y., Zhang, S., Liu, H., Chang, L., Ma, S., Zhang, J., and Zheng, C., 2017a, Mercury removal from flue gas by magnetospheres present in fly ash: Role of iron species and modification by HF: Fuel Processing Technology, v. 167, p. 263–270. doi:10.1016/j.fuproc.2017.07.016
  • Yang, J.P., Zhao, Y.C., Chang, L., Zhang, J.Y., and Zheng, C.G., 2015, Mercury adsorption and oxidation over cobalt oxide loaded magnetospheres catalyst from fly ash in oxyfuel combustion flue gas, Environmental Science & Technology, v. 49, p. 8210−8218. doi:10.1021/acs.est.5b01029
  • Yang, J.P., Zhao, Y.C., Zhang, J.Y., and Zheng, C.G., 2014, Regenerable cobalt oxide loaded magnetosphere catalyst from fly ash for mercury removal in coal combustion flue gas: Environmental Science & Technology, v. 48, p. 14837–14843. doi:10.1021/es504419v
  • Yang, J.P., Zhao, Y.C., Zhang, J.Y., and Zheng, C.G., 2016a, Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres catalyst from fly ash. Part 1. Catalyst characterization and performance evaluation: Fuel, v. 164, p. 419–428. doi:10.1016/j.fuel.2015.08.012
  • Yang, J.P., Zhao, Y.C., Zhang, J.Y., and Zheng, C.G., 2016b, Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres catalyst from fly ash. Part 2. Identification of involved reaction mechanism: Fuel, v. 167, p. 366–374. doi:10.1016/j.fuel.2015.11.003
  • Yang, J.P., Zhao, Y.C., Zhang, J.Y., and Zheng, C.G., 2016c, Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres catalyst from fly ash. Part 3. Regeneration performance in realistic flue gas atmosphere: Fuel, v. 173, p. 1–7. doi:10.1016/j.fuel.2015.12.077
  • Yang, L., Duan, Y., Wang, Y., Jiang, Y., Yang, X., and Zhao, C., 2008, Influence of boiler capacities on enrichment law of mercury: Journal of Power Engineering, v. 28, p. 302–307.
  • Yang, X., Duan, Y., Zhuo, Y., Yang, L., Chen, L., Li, Y., Zhang, L., Yang, L., Shen, X., and Xu, X., 2006, The characteristic of mercury sepciation around ESP in a coal fired power plant: Journal of Hohai University, v. 20, p. 39–42.
  • Yang, Y., Liu, J., Shen, F., Zhao, L., Wang, Z., and Long, Y., 2016d, Kinetic study of heterogeneous mercury oxidation by HCl on fly ash surface in coal-fired flue gas: Combustion and Flame, v. 168, p. 1–9. doi:10.1016/j.combustflame.2016.03.022
  • Yang, Y., Liu, J., Wang, Z., and Zhang, Z., 2017b, Homogeneous and heterogeneous reaction mechanisms and kinetics of mercury oxidation in coal-fired flue gas with bromine addition: Proceedings of the Combustion Institute, v. 36, p. 4039–4049. doi:10.1016/j.proci.2016.08.068
  • Yao, H., Luo, G., and Xu, M., 2006, Mercury emissions and species during combustion of coal and waste: Energy & Fuels, v. 20, p. 1946–1950. doi:10.1021/ef060100b
  • Yi, H.H., Hao, J.M., Duan, L., Tang, X.L., Ning, P., and Li, X.H., 2008, Fine particle and trace element emissions from an anthracite coal-fired power plant equipped with a bag-house in China: Fuel, v. 87, p. 2050–2057. doi:10.1016/j.fuel.2007.10.009
  • Yu, J., Feng, F., Wang, W., Luo, K., Chen, D., Bai, G., Li, Y., Zheng, L., Bai, A., and Li, Y., 2004, Regularity of flourine release from fuorine-rich coal combustion in the fluorine poisoning area: Environmental Science, v. 25, p. 43–46.
  • Yu, L., Li, C., Han, Z., Liu, J., and Jiang, L., 2015, Mercury emission characteristics from coal-fird power plants based on field tests: Environmental Engeineering, v. 33, p. 136–139.
  • Yu, M., Dong, Y., Wang, P., and Ma, C.Y., 2012, Progress of effects of chloride on mercury removal for coal-fired power plants: Chemical Industry and Engineering Progress, v. 31, p. 1610–1614.
  • Zeng, R., Zhuang, X., Koukouzas, N., and Xu, W., 2005, Characterization of trace elements in sulphur-rich late permian coals in the Heshan coal field, Guangxi, south China: International Journal of Coal Geology, v. 61, p. 87–95. doi:10.1016/j.coal.2004.06.005
  • Zhang, D., and Xie, X., 2014, Distribution features and emission characteristics of mercuryn in a Nanjing coal-fired power plant: The Administration and Technique of Environmental Monitoring, v. 26, p. 64–67.
  • Zhang, J., Lu, J., Yu, L., Wang, S., and Zhang, B., 2003, Distribution of trace elements in coal combustion with low temperature: Journal of Engineering Thermophysics, v. 24, p. 531–533.
  • Zhang, J.Y., Zhao, Y.C., Ding, F., Zeng, H.C., and Zheng, C.G., 2007, Preliminary study of trace element emissions and control during coal combustion: Frontiers of Energy and Power Engineering in China, v. 1, p. 273–279. doi:10.1007/s11708-007-0038-2
  • Zhang, J.Y., Zheng, C.G., Ren, D.Y., Chou, C.L., Liu, J., Zeng, R.S., Wang, Z.P., Zhao, F.H., and Ge, Y.T., 2004, Distribution of potentially hazardous trace elements in coals from Shanxi province, China: Fuel, v. 83, p. 129–135. doi:10.1016/S0016-2361(03)00221-7
  • Zhang, L., Zhuo, Y.Q., Du, W., Tao, Y., Chen, C.H., and Xu, X.C., 2012, Hg removal characteristics of noncarbon sorbents in a fixed-bed reactor: Industrial & Engineering Chemistry Research, v. 51, p. 5292–5298. doi:10.1021/ie202750c
  • Zhang, Y., Nakano, J., Liu, L., Wang, X., and Zhang, Z., 2015a, Trace element partitioning behavior of coal gangue-fired CFB plant: Experimental and equilibrium calculation: Environmental Science and Pollution Research International, v. 22, p. 15469–15478. doi:10.1007/s11356-015-4738-6
  • Zhang, Y., Wang, C.B., Li, W.H., Liu, H.M., Zhang, Y.S., Hack, P., and Pan, W.P., 2015b, Removal of gas-phase As2O3 by metal oxide adsorbents: Effects of experimental conditions and evaluation of adsorption mechanism: Energy & Fuels, v. 29, p. 6578–6585. doi:10.1021/acs.energyfuels.5b00948
  • Zhao, B., Liu, X.-W., Zhou, Z.-J., Shao, H.-Z., Wang, C., and Xu, M.-H., 2015, Mercury oxidized by V2O5–MoO3/TiO2 under multiple components flue gas: An actual coal-fired power plant test and a laboratory experiment: Fuel Processing Technology, v. 134, p. 198–204. doi:10.1016/j.fuproc.2015.01.034
  • Zhao, S.L., Duan, Y.F., Tan, H.Z., Liu, M., Wang, X.B., Wu, L.T., Wang, C.P., Lu, J.H., Yao, T., She, M., and Tang, H.J., 2016, Migration and emission characteristics of trace elements in a 660 MW coal-fired power plant of China: Energy & Fuels, v. 30, p. 5937–5944. doi:10.1021/acs.energyfuels.6b00450
  • Zhao, Y., Xue, F.M., Dong, L.Y., and Shao, Y., 2013a, Flue gas mercury removal technology for coal fired boiler: Thermal Power Generation, v. 42, p. 59–62.
  • Zhao, Y., Zhang, J., Huang, W., Wang, Z., Li, Y., Song, D., Zhao, F., and Zheng, C., 2008, Arsenic emission during combustion of high arsenic coals from southwestern Guizhou, China: Energy Conversion and Management, v. 49, p. 615–624. doi:10.1016/j.enconman.2007.07.044
  • Zhao, Y.C., Zhang, J.Y., Liu, J., Diaz-Somoano, M., Martinez-Tarazona, M.R., and Zheng, C.G., 2010a, Study on mechanism of mercury oxidation by fly ash from coal combustion: Chinese Science Bulletin, v. 55, p. 163–167. doi:10.1007/s11434-009-0567-7
  • Zhao, Y.C., Zhang, J.Y., Liu, J., Diaz-Somoano, M., Martinez-Tarazona, M.R., and Zheng, C.G., 2010b, Experimental study on fly ash capture mercury in flue gas: Science China Technological Sciences, v. 53, p. 976–983. doi:10.1007/s11431-009-0367-y
  • Zhao, Y.C., Zhang, J.Y., and Zheng, C.G., 2013b, Release and removal using sorbents of chromium from a high-Cr lignite in Shenbei coalfield, China: Fuel, v. 109, p. 86–93. doi:10.1016/j.fuel.2012.09.049
  • Zheng, B., Ding, Z.H., Huang, R.G., Zhu, J.M., Yu, X.Y., Wang, A.M., Zhou, D.X., Mao, D.J., and Su, H.C., 1999, Issues of health and disease relating to coal use in southwestern China: International Journal of Coal Geoglogy, v. 40, p. 119–132. doi:10.1016/S0166-5162(98)00064-0
  • Zheng, B., Hong, Y., Zhao, W., Zhou, H., and Xia, W., 1992, Se-rich carbonaceous-siliceous rocks of west Hubei and local Se poisoning: Chinese Science Bulletin, v. 37, p. 1027–1029.
  • Zheng, B., Yan, L., Mao, D., and Thornton, I., 1993, The Se resource in southwestern Hubei province, China, and its exploitation strategy: Journal of Natural Resource, v. 8, p. 204–212.
  • Zheng, C., Xu, M., Zhang, J., and Liu, J., 2002, Emission and control of trace elements during coal combustion: Hubei Science and Technology Press, p. 63,  Wuhan, China.
  • Zheng, C., Zhang, J., Zhao, Y., Liu, J., and Guo, X., 2010, Emission and control of mercury from coal combustion: Science Press: Beijing, China.
  • Zhong, L., Xiao, P., Jiang, J.Z., Guo, T., and Mei, Z.F., 2016, Experimental study on mercury removal by oxidation in a coal-fired boiler: Thermal Power Generation, v. 45, p. 52–58.
  • Zhou, J., Luo, Z., Zhu, Y., and Fang, M., 2013, Mercury emission and its control in Chinese coal-fired power plants: Zhejiang University Press, p. 30–31, Hangzhou, China.
  • Zhou, J., Wang, G., Luo, Z., and Cen, K., 2006, An experimental study of mercury emission from a 600 MW pulverized coal-fired boiler: Journal of Engineering for Thermal Energy and Power, v. 21, p. 569–572.
  • Zhou, J., Wu, X., Gao, H., Luo, Z., and Cen, K., 2004, Experimental study on mercury emission and control for CFB boilers: Thermal Power Generation, v. 33, p. 72–75.
  • Zhou, J., Zhang, L., Luo, Z., Hu, C., He, S., Zheng, J., and Cen, K., 2008, Study on mercury emission and its control for boiler of 300MW unit: Thermal Power Generation, v. 37, p. 22–27.
  • Zhou, Z.J., Liu, X.W., Zhao, B., Chen, Z.G., Shao, H.Z., Wang, L.L., and Xu, M.H., 2015, Effects of existing energy saving and air pollution control devices on mercury removal in coal-fired power plants: Fuel Processing Technology, v. 131, p. 99–108. doi:10.1016/j.fuproc.2014.11.014
  • Zhu, J.M., Wang, N., Li, S.H., Li, L., Su, H.C., and Liu, C.X., 2008, Distribution and transport of selenium in Yutangba, China: Impact of human activities: Science of the Total Environment, v. 392, p. 252–261. doi:10.1016/j.scitotenv.2007.12.019
  • Zhu, Z., Tan, Y., Zheng, J., Zhang, C., Li, Y., Zhang, D., and Wang, Q., 2003, Study on chromium existence and distribution in a 300MW pulverized coal fired utility boiler: Proceedings of CSEE, v. 23, p. 167–171.
  • Zhu, Z., Xue, L., Tan, Y., Zhang, C., Li, Y., Zhang, D., Wang, Q., Pan, L., and Ke, J., 2001, Studies characteristics of mercury distribution in combustion products at various loads of a P.C. fired utility boiler: Proceedings of CSEE, v. 21, p. 87–90.
  • Zhuang, X., Querol, X., Alastuey, A., Juan, R., Plana, F., Lopez-Soler, A., Du, G., and Martynov, V.V., 2006, Geochemistry and mineralogy of the Cretaceous Wulantuga high germanium coal deposit in Shengli coal field, Inner Mongolia, northeastern China: International Journal of Coal Geology, v. 66, p. 119–136. doi:10.1016/j.coal.2005.06.005
  • Zhuang, Y., Thompson, J.S., Zygarlicke, C.J., and Pavlish, J.H., 2007, Impact of calcium chloride addition on mercury transformations and control in coal flue gas: Fuel, v. 86, p. 2351–2359. doi:10.1016/j.fuel.2007.02.016

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.