286
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Relationship between the Altyn Tagh strike-slip fault and the Qaidam Basin:New insights from superposed buckle folding in Hongsanhan

, , , , , & ORCID Icon show all
Pages 1570-1580 | Received 11 Mar 2019, Accepted 25 Aug 2019, Published online: 05 Sep 2019

References

  • Aller, J., and Gallastegui, J., 1995, Analysis of kilometric-scale superposed folding in the Central Coal Basin (Cantabrian zone, NW Spain): Journal of Structural Geology, v. 17, no. 7, p. 961–969. doi:10.1016/0191-8141(94)00115-G.
  • Alvarez-Marron, J., 1995, Three-dimensional geometry and interference of fault-bend folds: Examplesfrom the Ponga UNit, Variscan Belt, NW Spain: Journal of Structural Geology, v. 17, no. 4, p. 549–560. doi:10.1016/0191-8141(94)00075-B.
  • Cheng, F., Jolivet, M., Fu, S., Zhang, Q., Guan, S., Yu, X., and Guo, Z., 2014, Northward growth of the Qimen Tagh Range: A new model accounting for the Late Neogene strike-slip deformation of the SW Qaidam Basin: Tectonophysics, v. 632, p. 32–47. doi:10.1016/j.tecto.2014.05.034.
  • Cheng, X., Fu, S., Wang, H., Yu, X., Cheng, F., Liu, R., Du, W., and Guo, Z., 2015, Geometry and kinematics of the Arlar strike-slip fault, SW Qaidam basin, China: New insights from 3-D seismic data: Journal of Asian Earth Sciences, v. 98, p. 198–208. doi: 10.1016/j.jseaes.2014.09.039.
  • Cheng, F., Jolivet, M., Dupont‐Nivet, G., Wang, L., Yu, X., and Guo, Z., 2016a, Lateral extrusion along the Altyn Tagh Fault, Qilian Shan (NE Tibet): Insight from a 3D crustal budget: Terra Nova, v. 27, no. 6, p. 416–425. doi:10.1111/ter.12173.
  • Cheng, F., Fu, S., Jolivet, M., Zhang, C., and Guo, Z., 2016b, Source to sink relation between the Eastern Kunlun Range and the Qaidam Basin, northern Tibetan Plateau, during the Cenozoic: Geological Society of America Bulletin, 128(1–2): 258–283.
  • Cheng, X., Zhang, D., Jolivet, M., Yu, X., Du, W., Liu, R., and Guo, Z., 2018, Cenozoic structural inversion from transtension to transpression in Yingxiong Range, western Qaidam Basin: New insights into strike-slip superimposition controlled by Altyn Tagh and Eastern Kunlun Faults: Tectonophysics, v. 723, p. 229–241. doi:10.1016/j.tecto.2017.12.019.
  • Cheng, X., Zhang, Q., Yu, X., Du, W., Liu, R., Bian, Q., Wang, Z.,Zhang, T., andGuo, Z., 2017, Strike-slip fault network of the Huangshi structure, SW Qaidam Basin: Insights from surface fractures and seismic data: Journal of Structural Geology, v. 94, p. 1–12. doi:10.1016/j.tecto.2017.12.019.
  • Cowgill, E., An, Y., Harrison, T.M., and Wang, X.F., 2003, Reconstruction of the Altyn Tagh fault based on U‐Pb geochronology: Role of back thrusts, mantle sutures, and heterogeneous crustal strength in forming the Tibetan Plateau: Journal of Geophysical Research Solid Earth, v. 108, no. B7, p. 457–470.
  • Fang, X., Zhang, W., Meng, Q., Gao, J., Wang, X., King, J., Song, C., Dai, S., and Miao, Y., 2007, High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau: Earth & Planetary Science Letters, v. 258, no. 1–2, p. 293–306.
  • Fu, S., Ma, D., and Guo, Z., Cheng, F., 2015, Strike-slip superimposed Qaidam Basin and its control on oil and gas accumulation, nw china. Petroleum Exploration and Development, 42(6), 778–789.
  • Gan, W., Zhang, P., Shen, Z. K., Niu, Z., Wang, M., and Wan, Y., et al. 2007. Present-day crustal motion within the tibetan plateau inferred from gps measurements. Journal of Geophysical Research Solid Earth, 112, B08416.
  • Ghosh,S.K, and Ramberg, H., 1968. Buckling experiments on intersecting fold patterns. Tectonophysics 5:89–105.
  • Ghosh, S.K., 1970, A theoretical study of intersecting fold patterns: Tectonophysics, v. 9, no. 6, p. 559–569. doi:10.1016/0040-1951(70)90006-5.
  • Ghosh, S.K., Deb, S.K., and Sengupta, S., 1996, Hinge migration and hinge replacement: Tectonophysics, v. 263, no. 1, p. 319–337. doi:10.1016/S0040-1951(96)00031-5.
  • Ghosh, S.K., Khan, D., and Sengupta, S., 1995, Interfering folds in constrictional deformation: Journal of Structural Geology, v. 17, no. 10, p. 1361–1373. doi:10.1016/0191-8141(95)00027-B.
  • Ghosh, S.K., Mandal, N., Khan, D., and Deb, S.K., 1992, Modes of superposed buckling in single layers controlled by initial tightness of early folds: Journal of Structural Geology, v. 14, no. 4, p. 381–394. doi:10.1016/0191-8141(92)90100-B.
  • Ghosh, S.K., Mandal, N., Sengupta, S., Deb, S.K., and Khan, D., 1993, Superposed buckling in multilayers: Journal of Structural Geology, v. 15, no. 1, p. 95–111. doi:10.1016/0191-8141(93)90081-K.
  • Huang, J., 1960, A preliminary summary of the basic characteristics of China’s geological structure: Acta Geologica Sinica, v 1, no. 1, p. 3–137.
  • Johns, M.K., and Mosher, S., 1996. Physical models of regional fold superposition: the role of competence contrast. Journal of Structural Geology 18, 475–492.
  • Julivert, M., and Marcos, A., 1973, Superimposed folding under flexural conditions in the Cantabrian Zone (Hercynian Cordillera, northwest Spain): American Journal of Science, v. 273, no. 5, p. 353–375.
  • Li, L., Wu, C., and Yu, X., 2018, Cenozoic evolution of the Altyn Tagh and East Kunlun fault zones inferred from detrital garnet, tourmaline and rutile in southwestern Qaidam Basin (Northern Tibetan Plateau): Basin Research, v. 30, no. 1, p. 35–58. doi:10.1111/bre.12241.
  • Liu, R., Allen, M.B., Zhang, Q., Du, W., Cheng, X., Holdsworth, R.E., and Guo, Z., 2017, Basement controls on deformation during oblique convergence: Transpressive structures in the western Qaidam Basin, northern Tibetan Plateau: Lithosphere, v. 9, no. 4., p. 584–596.
  • Lu, H., and Xiong, S., 2009, Magnetostratigraphy of the Dahonggou section, northern Qaidam Basin and its bearing on Cenozoic tectonic evolution of the Qilian Shan and Altyn Tagh Fault: Earth & Planetary Science Letters, v. 288, no. 3–4, p. 539–550.
  • Mao, L., Xiao, A., Wu, L., Li, B., Wang, L., Lou, Q., Dong, Y., and Qin, S., 2014. Cenozoic tectonic and sedimentary evolution of southern Qaidam Basin, NE Tibetan Plateau and its implication for the rejuvenation of Eastern Kunlun Mountains. Science China Earth Sciences, 57(11), 2726–2739.
  • Meng, Q.R., and Fang, X., Cenozoic tectonic development of the Qaidam Basin in the northeastern Tibetan Plateau, in Proceedings Geol. Soc. Am. Special Pap 2008, p. 1–24.
  • Meng, Q-R.., Hu, J-M.., and Yang, F-Z.., 2001. Timing and magnitude of displacement on the altyn tagh fault: constraints from stratigraphic correlation of adjoining tarim and qaidam basins, Nw China. Terra Nova 13(2),86–91.
  • Pei, Y., Paton, D.A., Wu, K., and Xie, L., 2017, Subsurface structural interpretation by applying trishear algorithm: An example from the Lenghu5 fold-and-thrust belt, Qaidam Basin, Northern Tibetan Plateau: Journal of Asian Earth Sciences, v. 143, p. 343–353. doi:10.1016/j.jseaes.2017.05.012.
  • Pei, Y., Paton, D., Knipe, R., Lickorish, W., Lickorish, W., Li, A., and Wu, K., 2018. Unraveling the influence of throw and stratigraphy in controlling subseismic fault architecture of fold-thrust belts: an example from the qaidam basin, northeast tibetan plateau. Aapg Bulletin, 102(06),1091–1117.
  • Ramsay, J.G., 1967, Folding and fracturing of rocks: McGraw-Hill Book Company, 568.
  • Ramsay, J.G., 1987, The Techniques of Modern Structural Geology, Vol. 2: Folds and Fractures. Academic Press, London.
  • Ritts, B.D., Yue, Y., and Graham, S.A., 2004, Oligocene‐miocene tectonics and sedimentation along the Altyn Tagh Fault, Northern Tibetan Plateau: Analysis of the Xorkol, Subei, and Aksay Basins: The Journal of Geology, v. 112, no. 2, p. 207–229. doi:10.1086/381658.
  • Simón, J.L., 2004, Superposed buckle folding in the eastern Iberian Chain, Spain: Journal of Structural Geology, v. 26, no. 8, p. 1447–1464. doi:10.1016/j.jsg.2003.11.026.
  • Skjernaa, L., 1975, Experiments on superimposed buckle folding: Tectonophysics, v. 27, no. 3, p. 255–270. doi:10.1016/0040-1951(75)90020-7.
  • Tapponnier, P., and Molnar, P., 1976, Slip-line field theory and large-scale continental tectonics: Nature, v. 264, no. 5584, p. 319–324. doi:10.1038/264319a0.
  • Tapponnier, P., Zhiqin, X., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G., and Jingsui, Y., 2001, Oblique stepwise rise and growth of the Tibet plateau: Science, v. 294, no. 5547, p. 1671–1677. doi:10.1126/science.105978.
  • Wang, C., Dai, J., Zhao, X., Li, Y., Graham, S.A., He, D., Ran, B., and Meng, J., 2014, Outward-growth of the Tibetan Plateau during the Cenozoic: A review ☆: Tectonophysics, v. 621, p. 1–43. doi:10.1016/j.tecto.2014.01.036.
  • Wang, C., Gao, R., Yin, A., Wang, H., Zhang, Y., Guo, T., Li, Q., and Li, Y., 2011, A mid-crustal strain-transfer model for continental deformation: A new perspective from high-resolution deep seismic-reflection profiling across NE Tibet: Earth & Planetary Science Letters, v. 306, no. 3–4, p. 279–288.
  • Wang, E., Xu, F.Y., Zhou, J.X., Wan, J., and Burchfiel, B.C., 2006, Eastward migration of the Qaidam Basin and its implications for cenozoic evolution of the Altun Tagh Fault and Associated River Systems: Geological Society of America Bulletin, v. 118, no. 3, p. 349–365. doi:10.1130/B25778.1.
  • Wei, Y., Xiao, A., Wu, L., Mao, L., Zhao, H., Shen, Y., and Wang, L., 2016, Temporal and spatial patterns of Cenozoic deformation across the Qaidam Basin: Northern Tibetan Plateau: Terra Nova, v. 28, no. 6, p. 409–418.
  • Wu, L., 2011, The Cenozoic tectonic process of central seg- ment of the Altyn Tagh Fault and its basin response [Ph.D. thesis]: Zhejiang University, Hangzhou, China, 152 p., (in Chinese with English abstract).
  • Wu, L., Lin, X., Cowgill, E., Xiao, A., Cheng, X., Chen, H., and Yang, S., 2019, Middle miocene reorganization of the Altyn Tagh fault system, northern Tibetan Plateau: Geological Society of America Bulletin, v. 131, no. 7–8, p. 1157–1178. doi:10.1130/B31875.1.
  • Wu, L., Xiao, A., Ma, D., Li, H., Xu, B., Shen, Y., and Mao, L., 2014, Cenozoic fault systems in southwest Qaidam Basin, northeastern Tibetan Plateau: Geometry, temporal development, and significance for hydrocarbon accumulation: AAPG Bulletin, v. 98, no. 6, p. 1213–1234.
  • Wu, L., Xiao, A., Yang, S., Wang, L., Mao, L., Wang, L., Dong, Y., and Xu, B., 2012a, Two-stage evolution of the Altyn Tagh Fault during the Cenozoic: New insight from provenance analysis of a geological section in NW Qaidam Basin, NW China: Terra Nova, v. 24, no. 5, p. 387–395.
  • Wu, L., Xiao, A.C., Wang, L.Q., Mao, L.G., Wang, L., Dong, Y.P., and Xu, B., 2012b, EW-trending uplifts along the southern side of the central segment of the Altyn Tagh Fault, NW China: Insight into the rising mechanism of the Altyn Mountain during the Cenozoic: Science China Earth Sciences, v. 55, no. 6, p. 926–939.
  • Xia, W., Zhang, N., Yuan, X., Fan, L., and Zhang, B., 2001, Cenozoic Qaidam Basin, China: A stronger tectonic inversed, extensional Rifted Basin: Aapg Bulletin, v. 85, no. 4, p. 715–736.
  • Xiao, A., Wu, L., Li, H., and Wang, L., 2013, Tectonic pro- cesses of the Cenozoic Altyn Tagh Fault and its cou- pling with the Qaidam Basin, NW China [in Chinese with English abstract]: Acta Petrologica Sinica, v. 29, no. 8, p. 2826–2836.
  • Yang, F., Ma, Z.Q., Xu, T.C., and Ye, S.J., 1992. A Tertiary paleomagnetic stratigraphic profile in Qaidam Basin. Acta Petrolei Sinica 13, 97–101.
  • Yin, A., Dang, Y., Zhang, M., Mcrivette, M.W., Burgess, W.P., and Chen, X., 2007, Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (part 2): Wedge tectonics in southern Qaidam basin and the Eastern Kunlun Range: Special Paper of the Geological Society of America, v. 433, p. 369–390.
  • Yin, A., Dang, Y.Q., Wang, L.C., Jiang, W.M., Zhou, S.P., Chen, X.H., Gehrels, G.E., and McRivette, M.W., 2008a, Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (Part 1): The southern Qilian Shan-Nan Shan thrust belt and northern Qaidam basin: Geological Society of America Bulletin, v. 120, p. 813e846. doi:10.1130/B26180.1.
  • Yin, A., Dang, Y.Q., Zhang, M., Chen, X.H., and McRivette, M.W., 2008b, Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (Part 3): Structural geology, sedimentation, and regional tectonic reconstruction: Geological Society of America Bulletin, v. 120, p. 847e876. doi:10.1130/B26232.1.
  • Yin, A., Gehrels, G., and Chen, X., 1999. Evidence for 280km of cenozoic left slip motion along the eastern segment of the altyn tagh fault system, western china. Eos Trans. Agu, 80(17): 1018
  • Yin, A., and Harrison, T.M., 2003, Geological evolution of the Himalayan-Tibetan Orogen: Annual Review of Earth & Planetary Sciences, v. 28, no. 1, p. 211–280. doi:10.1146/annurev.earth.28.1.211.
  • Yin, A., Rumelhart, P.E., Butler, R., Cowgill, E., Harrison, T.M., Foster, D.A., Ingersoll, R.V., Qing, Z., Xianqiang, Z., and Xiaofeng, W., 2002, Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation: Geological Society of America Bulletin, v. 114, no. 114, p. 1257–1295. doi:10.1130/0016-7606(2002)114<1257:THOTAT>2.0.CO;2.
  • Yu, X., Fu, S., Guan, S., Huang, B., Cheng, F., Cheng, X., Zhang, T., and Guo, Z., 2014b, Paleomagnetism of Eocene and Miocene sediments from the Qaidam Basin: Implication for no integral rotation since the Eocene and a rigid Qaidam block: Geochemistry, Geophysics, Geosystems, v. 15, no. 6, p. 2109–2127. doi:10.1002/2014GC005230.
  • Yu, X., Huang, B., Guan, S., Fu, S., Cheng, F., Cheng, X., Zhang, T., and Guo, Z., 2014a, Anisotropy of magnetic susceptibility of Eocene and Miocene sediments in the Qaidam Basin, Northwest China: Implication for Cenozoic tectonic transition and depocenter migration: Geochemistry, Geophysics, Geosystems, v. 15, no. 6, p. 2095–2108. doi:10.1002/2014GC005231.
  • Yuan, D.-Y., Ge, W.-P., Chen, Z.-W., Li, C.-Y., Wang, Z.-C., Zhang, H.-P., Zhang, P.-Z., Zheng, D.-W., Zheng, W.-J., Craddock, W.H., Dayem, K.E., Duvall, A.R., Hough, B.G., Lease, R.O., Champagnac, J.-D., Burbank, D.W., Clark, M.K., Farley, K.A., Garzione, C.N., Kirby, E., Molnar, P., and Roe, G.H., 2013, The growth of northeastern Tibet and its relevance to large-scale continental geodynamics: A review of recent studies: Tectonics, v. 32, p. 1–13. doi:10.1002/tect.20081.
  • Yue, Y., Ritts, B.D., and Graham, S.A., 2001. Initiation and long-term slip history of the altyn tagh fault. International Geology Review 43(12),1087–1093.
  • Zhang, W., Fang, X., Song, C., Appel, E., Yan, M., and Wang, Y., 2013. Late Neogene magnetostratigraphy in the western Qaidam Basin (NE Tibetan Plateau) and its constraints on active tectonic uplift and progressive evolution of growth strata. Tectonophysics 599, 107–116.
  • Zhao, H., Wei, Y., Shen, Y., Xiao, A., Mao, L., Wang, L., Guan, J., and Wu, L., 2016, Cenozoic tilting history of the south slope of the Altyn Tagh as revealed by seismic profiling: Implications for the kinematics of the Altyn Tagh fault bounding the northern margin of the Tibetan Plateau: Geosphere, v. 12, no. 3, p. GES01269.01261. doi:10.1130/GES01269.1.
  • Zhou, J., Xu, F., Wang, T., Cao, A., and Yin, C., 2006, Cenozoic deformation history of the Qaidam Basin, NW China: Results from cross-section restoration and implications for Qinghai-Tibet Plateau tectonics: Earth and Planetary Science Letters, v. 243, no. 1-2, p. 195–210.
  • Zhu, L., Wang, C., Zheng, H., Xiang, F., Yi, H., and Liu, D., 2006, Tectonic and sedimentary evolution of basins in the northeast of Qinghai-Tibet Plateau and their implication for the northward growth of the Plateau: Palaeogeography Palaeoclimatology Palaeoecology, v. 241, no. 1, p. 49–60. doi:10.1016/j.palaeo.2006.06.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.