264
Views
18
CrossRef citations to date
0
Altmetric
Research Article

The Neoproterozoic ophiolitic ultramafic rocks in Eastern Desert of Egypt: implications for petrogenesis and metasomatic processes

, ORCID Icon &
Pages 208-232 | Received 19 Aug 2019, Accepted 20 Dec 2019, Published online: 01 Jan 2020

References

  • Abd El-Rahman, Y., Ploat, A., Dilek, Y., Fryer, B., El-Sharkawy, M., and Sakran, S., 2009a, Geochemistry and tectonic evolution of the Neoproterozoic incipient arc-forearc crust in the Fawakhir area, Central Eastern Desert, Egypt: Precambrian Research, v. 175, p. 116–134. doi:10.1016/j.precamres.2009.09.008.
  • Abd El-Rahman, Y., Polat, A., Dilek, Y., Fryer, B.J., El-Sharkawy, M., and Sakran, S., 2009b, Geochemistry and tectonic evolution of the Neoproterozoic Wadi Ghadir ophiolite, Eastern Desert, Egypt: Lithos, v. 113, no. 1, p. 158–178. doi:10.1016/j.lithos.2008.12.014.
  • Abd El-Rahman, Y.A., Helmy, H.M., Shibata, T., Yoshikawa, M., Arai, S., and Tamura, A., 2012, Mineral chemistry of the Neoproterozoic Alaskan-type Akarem Intrusion with special emphasis on amphibole: Implications for the pluton origin and evolution of subduction-related magma: Lithos, v. 155, p. 410–425. doi:10.1016/j.lithos.2012.09.015.
  • Abdel–Karim, A.M., 2000, Chlorite schists and rodingites in the mafic-ultramafic rocks from the central Eastern Desert of Egypt: Petrogenesis and metamorphic history. M.E.R.C. Ain Shams University: Earth Science Server, v. 14, p. 150–170.
  • Abdel-Karim, A.M., and Ahmed, Z., 2010, Possible origin of the ophiolites of Eastern Desert of Egypt, from geochemical prospectives: The Arabian Journal for Science and Engineering, v. 34, no. 1C, p. 1–27.
  • Abdel–Karim, A.M., Ali, S., and El–Shafei, S.A., 2018, Mineral chemistry and geochemistry of ophiolitic metaultramafics from Um Halham and Fawakhir, Central Eastern Desert, Egypt: International Journal of Earth Sciences, v. 107, no. 7, p. 2337–2355. doi:10.1007/s00531-018-1601-2.
  • Abdel-Karim, A.M., El-Mahallawi, M.M., and Finger, F., 1996, The ophiolite melange of Wadi Dunqash and Wadi Arayis, Eastern Desert of Egypt: Petrogenesis and tectonic evolution: Acta Mineralogica-Petrographica, v. 37, p. 129–141.
  • Abdel-Karim, A.M., and El-Shafei, S.A., 2018, Mineralogy and chemical aspects of some ophiolitic metaultramafics, central Eastern Desert, Egypt: Evidences from Cr-spinels, sulphides and gangues: Geological Journal, v. 53, p. 580–599. doi:10.1002/gj.2914.
  • Abdel-Karim, A.M., Helmy, H.M., Elwan, W.I., and El-Shafei, S.A., 2014, Spinels, Fe-Ti oxides minerals, apatites and carbonates hosted in the ophiolites of Eastern Desert of Egypt: Mineralogy and chemical aspects: Arabian Journal of Geosciences, v. 7, no. 2, p. 693–709. doi:10.1007/s12517-013-0854-0.
  • Abdel-Karim, A.M., Helmy, H.M., Ali, S., and El-Shafei, S.A., 2016, A fore-arc setting of the Gerf ophiolite, Eastern Desert, Egypt: Evidence from mineral chemistry and geochemistry of ultramafites: Lithos, v. 263, p. 52–65. doi:10.1016/j.lithos.2016.05.023.
  • Abdel-Karim, A.M., Soliman, M.M., El-Kazzaz, Y.A., Mazhar, A.A., and Abdel-Gawad, G.M., 2002, Geological and geochemical characteristics of the mafic-ultramafic rocks of Gabal Garf area, south Eastern Desert of Egypt: Annals Geological Survey, Egypt, v. 24, p. 193–218.
  • Abdel-Khalek, M.L., Takla, M.A., Sehim, A., Hamimi, Z., and El- Manawi, A.W., 1992, Geology and tectonic evolution of W. Beitan area, Southeastern Desert, Egypt: Geology of the Arab World. Cairo University, p. 369–394.
  • Abuamarah, B.A., 2019, Geochemistry and fore-arc evolution of upper mantle peridotites in the Cryogenian Bir Umq ophiolite, Arabian Shield, Saudi Arabia: International Geology Review. doi:10.1080/00206814.2019.1652942).
  • Ahmed, A.H., 2013, Highly depleted harzburgite–Dunite–Chromitite complexes from the Neoproterozoic ophiolite, south Eastern Desert, Egypt: A possible recycled upper mantle lithosphere: Precambrian Research, v. 233, p. 173–192. doi:10.1016/j.precamres.2013.05.001.
  • Ahmed, A.H., Arai, S., and Attia, A.K., 2001, Petrological characteristics of podiform chromitites and associated peridotites of Pan-African complexes of Egypt: Mineralium Deposita, v. 36, p. 72–84. doi:10.1007/s001260050287.
  • Ahmed, A.H., Gharib, M.E., and Arai, S., 2012a, Characterization of the thermally metamorphosed mantle–Crust transition zone of the neoproterozoic ophiolite at Gebel Mudarjaj, south Eastern Desert, Egypt: Lithos, v. 142–143, p. 67–83. doi:10.1016/j.lithos.2012.02.014.
  • Ahmed, A.H., and Habtoor, A., 2015, Heterogeneously depleted Precambrian lithosphere deduced from mantle peridotites and associated chromitite deposits of Al’Ays ophiolite, Northwestern Arabian Shield, Saudi Arabia: Ore Geology Reviews, v. 67, p. 279–296. doi:10.1016/j.oregeorev.2014.12.018.
  • Ahmed, A.H., Hanghøj, K., Kelemen, P.B., Hart, S.R., and Arai, S., 2006, Osmium isotope systematics of the Proterozoic and Phanerozoic ophiolitic chromitites: In situ ion probe analysis of primary Os-rich PGM: Earth and Planetary Science Letters, v. 245, p. 777–791. doi:10.1016/j.epsl.2006.03.021.
  • Ahmed, Z., and Hariri, M.M., 2008, Neoproterozoic ophiolites as developed in Saudi Arabia and their oceanic and pericontinental domains: Arabian Journal for Science and Engineering, v. 33, p. 17–54.
  • Arai, S., 1992, Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry: Mineralogical Magazine, v. 56, no. 383, p. 173–184. doi:10.1180/minmag.1992.056.383.04.
  • Arai, S., 1994, Compositional variation of olivine-chromain spinel in Mg-rich magmas as a guide to their residual spinel peridotites: Journal of Volcanology and Geothermal Research, v. 59, no. 4, p. 279–293. doi:10.1016/0377-0273(94)90083-3.
  • Arai, S., 1997a, Control of wall-rock composition on the formation of podiform chromitites as a result of magma/peridotite interaction: Resource Geology, v. 47, p. 177–187.
  • Arai, S., 1997b, Origin of podiform chromitites: Journal of Asian Earth Sciences, v. 15, p. 303–310. doi:10.1016/S0743-9547(97)00015-9.
  • Arai, S., Shimizu, Y., Ismail, S.A., and Ahmed, A.H., 2006b, Low-T formation of high-Cr spinel with apparently primary chemical characteristics within podiform chromitite from Rayat, northeastern Iraq: Mineralogical Magazine, v. 70, p. 499–508. doi:10.1180/0026461067050353.
  • Arai, S., and Yurimoto, H., 1994, Podiform chromitites of the Tari-Misaka ultramafic complex, Southwestern Japan, as mantle–Melt interaction products: Economic Geology, v. 89, p. 1279–1288. doi:10.2113/gsecongeo.89.6.1279.
  • Ashmawy, M.H., 1987, The ophiolite mélange of the south Eastern Desert of Egypt; remote sensing field work and petrographic investigation [Ph. D. Thesis]: Berlin (A), Berliner Geowiss. Abh., v. 84, 134 p.
  • Azer, M.K., 2014, Petrological studies of neoproterozoic serpentinized ultramafics of the nubian shield: spinel compositions as evidence of the tectonic evolution of egyptian ophiolites: Acta Geologica Polonica, v. 64, p. 113-127.
  • Azer, M.K., Gahlan, H.A., Asimow, P.D., Mubarak, H.S., and Al-Kahtany, K.M., 2019, Multiple stages of carbonation and element redistribution during formation of Ultramafic-Hosted Magnesite in Neoproterozoic Ophiolites of the Arabian-Nubian Shield, Egypt: Journal of Geology, v. 127, p. 81–107. doi:10.1086/700652.
  • Azer, M.K., and Khalil, A.E., 2005, Petrological and mineralogical studies of Pan-African serpentinites at Bir Al-Edeid area, central Eastern Desert, Egypt: Journal of African Earth Science, v. 43, p. 525–536. doi:10.1016/j.jafrearsci.2005.09.008.
  • Azer, M.K., Samuel, M.D., Ali, K.A., Gahlan, H.A., Stern, R.J., Ren, M., and Moussa, H.E., 2013, Neoproterozoic ophiolitic peridotites along the Allaqi-Heiani Suture, South Eastern Desert, Egypt: Mineralogy and Petrology, v. 107, no. 5, p. 829–848. doi:10.1007/s00710-012-0204-z.
  • Azer, M.K., and Stern, R.J., 2007, Neoproterozoic (835–720 Ma) serpentinites in the Eastern Desert, Egypt: Fragments of forearc mantle: Journal of Geology, v. 115, no. 4, p. 457–472. doi:10.1086/518052.
  • Babechuk, M.G., Kamber, B.S., Greig, A., Canil, D., and Kodolányi, J., 2010, The behaviour of tungsten during mantle melting revisited with implications for planetary differentiation time scales: Geochimica Et Cosmochimica Acta, v. 74, no. 4, p. 1448–1470. doi:10.1016/j.gca.2009.11.018.
  • Barnes, I., and O’Neil, J.R., 1969, The relationship between fluids in some fresh Apline type ultramafics and possible modern serpentinization. Western United States: Geological Society of America Bulletin, v. 80, no. 10, p. 1947–1960. doi:10.1130/0016-7606(1969)80[1947:TRBFIS]2.0.CO;2.
  • Barnes, S.J., and Roeder, P.L., 2001, The range of spinel composition in terrestrial mafic ultramafic rocks: Journal of Petrology, v. 42, no. 12, p. 2279–2302. doi:10.1093/petrology/42.12.2279.
  • Basta, F.F., Maurice, A.E., Bakhit, B.R., Ali, K.A., and Manton, W.I., 2011, Neoproterozoic contaminated MORB of Wadi Ghadir ophiolite, NE Africa: Geochemical and Nd and Sr isotopic constraints: Journal of African Earth Sciences, v. 59, p. 227–242. doi:10.1016/j.jafrearsci.2010.10.008.
  • Bédard, J.H., and Hébert, R., 1998, Formation of chromitites by assimilation of crustal pyroxenites and gabbros into peridotitic intrusions: North Arm Mountain Massif, Bay of Islands Ophiolite, Newfoundland, Canada: Journal of Geophysical Research, v. 103, p. 5165–5184. doi:10.1029/97JB03291.
  • Berly, T.J., Hermann, J., Arculus, R.J., and Lapierre, H., 2006, Supra-subduction zone pyroxenites from San Jore and Santa Isabel (Solomon Islands): Journal of Petrology, v. 47, p. 1531–1555. doi:10.1093/petrology/egl019.
  • Bizimis, M., Salters, V.J.M., and Bonatti, E., 2000, Trace and REE content of clinopyroxenes from supra-subduction zone peridotites. Implications for melting and enrichment processes in island arcs: Chemical Geology, v. 165, p. 67–85. doi:10.1016/S0009-2541(99)00164-3.
  • Bodinier, J.L., and Godard, M., 2003, Orogenic, ophiolitic, and abyssal peridotites, in Carlson, R.W., ed., Treatise on geochemistry mantle and core: Treatise on geochemistry, France, v. 2, p. 1-73.
  • Bonatti, E., and Michael, P.J., 1989, Mantle peridotites from continental rifts to oceanic basins to subduction zones: Earth and Planetary Science Letters, v. 91, no. 3, p. 297–311. doi:10.1016/0012-821X(89)90005-8.
  • Boskabadi, A., Pitcairn, I.K., Broman, C., Boyce, A., Teagle, D.A.H., Cooper, M.J., Azer, M.K., Stern, R.J., Mohamed, F.H., and Majka, J., 2017, Carbonate alteration of ophiolitic rocks in the Arabian Nubian Shield of Egypt: Sources and compositions of the carbonating fluid and implications for the formation of Au deposits: International Geology Review, v. 59, no. 4, p. 391–419. doi:10.1080/00206814.2016.1227281.
  • Cathelineau, M., and Nieva, D., 1995, A chlorite solid solution geothermometer: The Los Azufres (Mexico) geothermal system: Contribution to Mineralogy and Petrology, v. 91, p. 235–244. doi:10.1007/BF00413350.
  • Coish, R.A., and Gardner, P., 2004, Suprasubduction-zone peridotite in the northern USA Appalachians: Evidence from mineral composition: Mineralogical Magazine, v. 68, p. 699–708. doi:10.1180/0026461046840214.
  • Coleman, R.G., and Keith, T.E., 1971, A geochemical study of serpentinization, burro mountain, California: Journal of Petrology, v. 12, p. 311–328. doi:10.1093/petrology/12.2.311.
  • Dai, J.G., Wang, C.S., Hébert, R., Santosh, M., Li, Y.L., and Xu, J.Y., 2011, Petrology and geochemistry of peridotites in the Zongba Ophiolite, Yarlung Zangbo Suture Zone: Implications for the early cretaceous intra-oceanic subduction zone within the Neo-Tethys: Chemical Geology, v. 288, p. 133–148. doi:10.1016/j.chemgeo.2011.07.011.
  • Deer, W.A., Howie, R.A., and Zussman, J., 1992, An introduction to the rock forming minerals (Second edition): London, Longman Scientific and Technical, 696 p.
  • Deschamps, F., Godard, M., Guillot, S., and Hattori, K., 2013, Geochemistry of subduction zone serpentinites: A review: Lithos, v. 178, p. 96–127. doi:10.1016/j.lithos.2013.05.019.
  • Dick, H.J., and Bullen, T., 1984, Chromian spinel as a petrogenetic indicator in abyssal and alpine type peridotites and spatially associated lavas: Contributions to Mineralogy and Petrology, v. 86, no. 1, p. 54–76. doi:10.1007/BF00373711.
  • Dijkstra, A.H., Drury, M., Mason, P.R.D., and Vissers, R.L.M., 2001, Structural petrology of plagioclase peridotites in the West Othris Mountains (Greece): Melt impregnation in mantle lithosphere: Journal of Petrology, v. 42, p. 5–24. doi:10.1093/petrology/42.1.5.
  • Dilek, Y., and Thy, P., 1998, Structure, petrology, and seafloor spreading tectonics of the Kizildag ophiolite (Turkey), in Mills, R., and Harrison, K., eds., Modern ocean floor processes and the geological record: Geological Society of London Special Publication, v. 148, p. 43–69. doi:10.1144/GSL.SP.1998.148.01.04.
  • Dilek, Y., and Ahmed, Z., 2003, Proterozoic ophiolites of the Arabian shield and their significance in Precambrian tectonics, in Dilek, Y., and Robinson, P.T., eds., Ophiolites in earth history: Geological Society of London Special Publication, v. 218, p. 685–700. doi:10.1144/GSL.SP.2003.218.01.33.
  • Dilek, Y., and Furnes, H., 2009, Structure and geochemistry of Tethyan ophiolites and their petrogenesis in subduction rollback systems: Lithos, v. 113, no. 1–2, p. 1–20. doi:10.1016/j.lithos.2009.04.022.
  • Dilek, Y., and Furnes, H., 2011, Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere: The Geological Society of America Bulletin, v. 123, p. 387–411. doi:10.1130/B30446.1.
  • Dilek, Y., and Furnes, H., 2014, Origins of ophiolites: Elements, v. 10, p. 93–100. doi:10.2113/gselements.10.2.93.
  • Dilek, Y., Furnes, H., and Shallo, M., 2007, Suprasubduction zone ophiolite formation along the periphery of Mesozoic Gondwana: Gondwana Research, v. 11, p. 453–475. doi:10.1016/j.gr.2007.01.005.
  • Dupuis, C., and Beaudoin, G., 2011, Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types: Mineralium Deposita, v. 46, p. 319–335. doi:10.1007/s00126-011-0334-y.
  • Egyptian Geological Survey and Mining Authority (EGSMA), 2002, Geological Map of Marsa Shaab Quadrangle, Egypt, scale.1: 250,000.
  • El Bayoumi, R.M., 1983, Ophiolites and melange complex of Wadi Ghadir area, Eastern Desert, Egypt: Bulletin of Faculty of Science, King Abdul Aziz University, v. 6, p. 329–342.
  • El-Sayed, M.M., Furnes, H., and Mohamed, F.H., 1999, Geochemical constraints on the tectonomagmatic evolution of the late Precambrian Fawakhir ophiolite, central Eastern Desert, Egypt: Journal of African Earth Sciences, v. 29, no. 3, p. 515–533. doi:10.1016/S0899-5362(99)00113-X.
  • Evans, B.W., 2010, Lizardite versus antigorite serpentinite: Magnetite, hydrogen, and life (?): Geology, v. 38, p. 879–882. doi:10.1130/G31158.1.
  • Evans, B.W., and Frost, B.R., 1975, Chrome-spinel in progressive metamorphism: Geochimica Et Cosmochimica Acta, v. 39, no. 6–7, p. 959–972. doi:10.1016/0016-7037(75)90041-1.
  • Evans, B.W., Johannes, W., Oterdsom, H., and Trommsdorff, V., 1976, Stability of chrysotile and antigorite in serpentinite multisystem: Schweizerische Mineralogische Und Petrographische Mitteilungen, v. 56, p. 79–93.
  • Evans, C.A., 1985, Magmatic `metasomatism’ in peridotites from the Zambales ophiolite: Geology, v. 13, p. 166–169.
  • Farahat, E.S., 2008, Chrome-spinels in serpentinites and talc carbonates of the El Ideid-El-Sodmein District, central EasternDesert, Egypt: Their metamorphism and petrogenetic implications: Chemie Der Erde, v. 68, p. 193–205. doi:10.1016/j.chemer.2006.01.003.
  • Farahat, E.S., 2010, Neoproterozoic arc-back-arc system in the Central Eastern Desert of Egypt: Evidence from suprasubduction zone ophiolites: Lithos, v. 120, p. 293–308. doi:10.1016/j.lithos.2010.08.017.
  • Farahat, E.S., El Mahallawi, M.M., Hoinkes, G., and Abdel Aal, A.Y., 2004, Continental back-arc basin origin of some ophiolites from the Eastern Desert of Egypt: Mineralogy and Petrology, v. 82, no. 1–2, p. 81–104. doi:10.1007/s00710-004-0052-6.
  • Farahat, E.S., Hoinkes, G., and Mogessie, A., 2011, Petrogenetic and geotectonic significance of Neoproterozoic suprasubduction mantle as revealed by the Wizer ophiolite complex, Central Eastern Desert, Egypt: International Journal of Earth Science, v. 100, p. 1433–1450. doi:10.1007/s00531-010-0592-4.
  • Furnes, H., de Wit, M., and Dilek, Y., 2014, Four billion years of ophiolites reveal secular trends in oceanic crust formation: Geoscience Frontiers, v. 5, p. 571–603. doi:10.1016/j.gsf.2014.02.002.
  • Gahlan, H.A., and Arai, S., 2009, Carbonate-orthopyroxenite lenses from the Neoproterozoic Gerf ophiolite, South Eastern Desert, Egypt: The first record in the Arabian Nubian shield ophiolites: Journal of African Earth Sciences, v. 53, p. 70–82. doi:10.1016/j.jafrearsci.2008.09.005.
  • Gahlan, H.A., Arai, S., Abu El-Ela, F.F., and Tamura, A., 2012, Origin of wehrlite cumulates in the Moho transition zone of the Neoproterozoic Ras Salatit ophiolite, Central Eastern Desert, Egypt: Contributions to Mineralogy and Petrology, v. 163, p. 225–241. doi:10.1007/s00410-011-0669-5.
  • Gahlan, H.A., Azer, M.K., and Asimow, P.D., 2018, On the relative timing of listwaenite formation and chromian spinel equilibration in serpentinites: American Mineralogist, v. 103, p. 1087–1102. doi:10.2138/am-2018-6473.
  • Gahlan, H.A., Azer, M.K., and Khalil, A.E.S., 2015, The Neoproterozoic Abu Dahr ophiolite, South Eastern Desert, Egypt: Petrological characteristics and tectonomagmatic evolution: Mineralogy and Petrology, v. 109, p. 611–630. doi:10.1007/s00710-015-0397-z.
  • Gamal El Dien, H.M., Hamdy, M.M., Abu El Ela, A., Abu Alam, T., Hassan, A., Kil, Y., Mizukami, T., and Soda, Y., 2016, Neoproterozoic serpentinites from the Eastern Desert of Egypt: Insights into Neoproterozoicmantle geodynamics and processes beneath the Arabian–Nubian Shield: Precambrian Research, v. 286, p. 213–233. doi:10.1016/j.precamres.2016.10.006.
  • Ghoneim, M.F., and Khedr, M.Z., 2004, Pre-post collosional plutonites of Arais area, Eastern Desert, Egypt: geochemical concept: 6th International Conference on Geochemistry, Alexandria University, Egypt, p. 15–17
  • Ghoneim, M.F., Lebda, M.M., Nasr, B.B., and Khedr, M.Z., 2002, Geology and tectonic evolution of the area around Wadi Arais, Southern Eastern Desert, Egypt: 6th International Conference on the Geology of the Arab World (GAW 6),Cairo University, p. 45–66.
  • Ghoneim, M.F., Salem, I.A., and Hamdy, M.M., 2003, Origin of magnesite veins in serpentinites from Mount El-Rubshi and Mount El-Maiyit, Eastern Desert, Egypt: Archiwum Mineralogiczne, v. 54, p. 41–63.
  • González-Jiménez, J.M., Proenza, J.A., Gervilla, F., Melgarejo, J.C., Blanco-Moreno, J.A., Ruiz-Sánchez, R., and Griffin, W.L., 2011, High-Cr and high-Al chromitites from the Sagua de Tánamo district, Mayarí-Cristal ophiolitic massif (eastern Cuba): Constraints on their origin from mineralogy and geochemistry of chromian spinel and platinum-group elements: Lithos, v. 125, no. 1–2, p. 101–121. doi:10.1016/j.lithos.2011.01.016.
  • Gruau, G., Bernard-Griffiths, J., and Lécuyer, C., 1998, The origin of U-shaped rare earth patterns in ophiolite peridotites: Assessing the role of secondary alteration and melt/rock reaction: Geochimica Et Cosmochimica Acta, v. 62, no. 21/22, p. 3545–3560.
  • Hamdy, M.M., Abu El-Ela, A.M., Hassan, A.M., Kil, Y., and Gamal El Dien, H.M., 2013, Subduction-related cryptic metasomatism in fore-arc to nascent fore-arc Neoproterozoic mantle peridotites beneath the Eastern Desert of Egypt: Mineral chemical and geochemical evidences:International EGU General Assembly Conference Abstracts, Vienna, Austria, v. 15, p. 14056p.
  • Hamdy, M.M., and Lebda, E.M.M., 2011, Al-compositional variation in ophiolitic chromitites from the south Eastern Desert of Egypt: Petrogenetic implications: Journal of Geology and Mining Research, v. 3, no. 9, p. 232–250.
  • Harte, B., Hunter, H., and Kinny, P.D., 1993, Melt geometry, movement and crystallization, in relation to mantle dykes, veins and metasomatism: Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences, v. 342, p. 1-21.
  • Hassan, S.M., and Sadek, M.F., 2017, Geological mapping and spectral based classification of basement rocks using remote sensing data analysis: The Korbiai-Gerf nappe complex, South Eastern Desert, Egypt: Journal of African Earth Sciences, v. 134, p. 404–418. doi:10.1016/j.jafrearsci.2017.07.006.
  • Hawkins, J.W., 2003, Geology of supra-subduction zones—Implications for the origin of ophiolites, in Dilek, Y., and Newcomb, S., eds., Ophiolite concept and the evolution of geological thought: Geological Society of America Special Paper, v. 373, p. 227–268.
  • Hellebrand, E., Snow, J.E., Dick, H.J.B., and Hoffmann, A.W., 2001, Coupled major and trace elements as indicators of the extent of melting in mid-Ocean ridge peridotites: Nature, v. 410, p. 677–681. doi:10.1038/35070546.
  • Helmy, H.M., El-Shafei, S.A., and Elwan, W.I., 2018, Mineralogy and geochemistry of metasomatized mantle peridotites from the Eastern Desert of Egypt: The role of granite-related hydrothermal fluids in gold mineralizations: Journal of African Earth Sciences, v. 144, p. 136–150. doi:10.1016/j.jafrearsci.2018.04.003.
  • Helmy, H.M., and Mahallawi, M., 2003, Gabbro akarem mafic-ultramafic complex, Eastern Desert, Egypt: a Late Precambrian Analogue Of Alaskan-type Complexes: Mineralogy and Petrology, v. 77, p. 85-108.
  • Hey, M.H., 1954, A new review of the chlorite: Mineralogical Magazine, v. 30, p. 227.
  • Hicky, R.L., and Frey, F.A., 1982, Geochemical characteristics of boninite services volcanic: Implication for their source: Geochimica Et Cosmochimica Acta, v. 46, p. 2099–2115. doi:10.1016/0016-7037(82)90188-0.
  • Hirose, K., and Kawamoto, T., 1995, Hydrous partial melting of lherzolite at 1 GPa: The effect of H2O on the genesis of basaltic magmas: Earth and Planetary Science Letters, v. 133, p. 463–473. doi:10.1016/0012-821X(95)00096-U.
  • Irvine, T.N., 1967, Chromium spinel as a petrogenetic indicator: part 2. Petrologic Applications: Canadian Journal of Earth Sciences, v. 4, p. 71-103.
  • Ishii, T., Robinson, P.T., Maekawa, H., and Fiske, R., 1992, Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu–Ogasawara–Mariana forearc.
  • Iyer, K., Rüpke, L.H., and Morgan, J.P., 2010, Feedbacks between mantle hydration and hydrothermal convection at ocean spreading centers. Earth planet: Earth and Planetary Science Letters, v. 296, no. 1–2, p. 34–44. doi:10.1016/j.epsl.2010.04.037.
  • Jan, M.Q., and Windley, B.F., 1990, Chromian spinel-silicate chemistry in ultramafic rocks of the Jijal complex, Northwestern Pakistan: Journal of Petrology, v. 31, no. 3, p. 667–715. doi:10.1093/petrology/31.3.667.
  • Je´brak, M., 1997, Hydrothermal breccias in vein-type ore deposits: A review of mechanisms, morphology and size distribution: Ore Geology Reviews, v. 12, p. 111–134. doi:10.1016/S0169-1368(97)00009-7.
  • Johnson, M.C., and Plank, T., 1999, Dehydration and melting experiments constrain the fate of subducted sediments: Geochemistry, Geophysics, Geosystems, v. 1. doi:10.1029/1999GC000014.
  • Jöns, N., and Schenk, V., 2007, Relics of the mozambique ocean in the entral eastern african orogen: evidence from the vohibory block of southern madagascar: Journal of Metamorphic Petrology, v. 26, p. 17-28.
  • JunBing, C., and ZhiGang, Z., 2007, Metasomatism of the peridotites from southern Marianafore-arc: Trace element characteristics of clinopyroxene and amphibole: Science in China Series D: Earth Sciences, v. 50, p. 1005–1012. doi:10.1007/s11430-007-0023-y.
  • Kamenetsky, V.S., Crawford, A.J., and Meffre, S., 2001, Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks: Journal of Petrology, v. 42, no. 4, p. 655–671. doi:10.1093/petrology/42.4.655.
  • Kapsiotis, A., Grammatikopoulos, T.A., Tsikouras, B., and Hatzipanagiotou, K., 2009, Chromian spinel composition and platinum-group element mineralogy of chromitites from the Milia area, Pindos ophiolite complex, Greece: The Canadian Mineralogist, v. 47, no. 5, p. 1037–1056. doi:10.3749/canmin.47.5.1037.
  • Kelemen, P.B., Koga, K., and Shimizu, N., 1997, Geochemistry of gabbro sills in the crust-mantle transition zone of the Oman ophiolite: Implications for the origin of the oceanic lower crust: Earth and Planetary Science Letters, v. 146, no. 3–4, p. 475–488. doi:10.1016/S0012-821X(96)00235-X.
  • Kent, A.J.R., Ashley, P.M., and Fanning, C.M., 2000, Metasomatic alteration associated with regional metamorphism: An example from the Willyama Supergroup, South Australia: Lithos, v. 54, p. 33–62. doi:10.1016/S0024-4937(00)00021-9.
  • Khalil, A.E.S., and Azer, M.K., 2007, Supra-subduction affinity in the Neoproterozoic serpentinites in the Eastern Desert, Egypt: Evidence from mineral composition: African Earth Science, v. 49, p. 136–152. doi:10.1016/j.jafrearsci.2007.08.002.
  • Khalil, A.E.S., Obeid, M.A., and Azer, M.K., 2014, Serpentinized peridotites at the north part of Wadi Allaqi district (Egypt): Implications for the tectono-magmatic evolution of fore-arc crust: Acta Geologica Sinica, v. 88, no. 5, p. 1421–1436. doi:10.1111/1755-6724.12309.
  • Khedr, M.Z., and Arai, S., 2012, Petrology and geochemistry of prograde deserpentinized peridotites from Happo-O’ne, Japan: Evidence of element mobility during deserpentinization: Journal of Asian Earth Science, v. 43, p. 150–163. doi:10.1016/j.jseaes.2011.08.017.
  • Khedr, M.Z., and Arai, S., 2013, Origin of Neoproterozoic ophiolitic peridotites in south Eastern Desert, Egypt, constrained from primary mantle mineral chemistry: Mineralogy and Petrology, v. 107, p. 807–828. doi:10.1007/s00710-012-0213-y.
  • Khedr, M.Z., and Arai, S., 2016, Chemical variations of mineral inclusions in Neoproterozoic high-Cr chromitites from Egypt: Evidence of fluids during chromitite genesis: Lithos, v. 240–243, p. 309–326. doi:10.1016/j.lithos.2015.11.029.
  • Khedr, M.Z., and Arai, S., 2017, Peridotite-chromitite complexes in the Eastern Desert of Egypt: Insight into Neoproterozoic sub-arc mantle processes: Gondwana Research, v. 52, p. 59–79. doi:10.1016/j.gr.2017.09.001.
  • Khedr, M.Z., Arai, S., Python, M., and Tamura, A., 2014, Chemical variations of abyssal peridotites in the central Oman ophiolite: Evidence of oceanic mantle heterogeneity: Gondwana Research, v. 25, p. 1242–1262. doi:10.1016/j.gr.2013.05.010.
  • Khudeir, A.A., 1995, Chromian spinel-silicate chemistry in peridotite and orthopyroxenite relicts from ophiolitic serpentinites, Eastern Desert, Egypt: Bulletin of Faculty of Sciences, Assiut University, v. 24, p. 221–261.
  • Kimball, K.L., Spear, F.S., and Dick, H.J.B., 1985, High temperature alteration of abyssal ultramafics from the Islas Orcadas fracture zone, south Atlantic: Contributions to Mineralogy and Petrology, v. 91, p. 307–320. doi:10.1007/BF00374687.
  • Klitzsch, E., List, F.K., and Pohlmann, G., 1987, Geological map of Egypt, Luxor Sheet: Cairo, Egypt, The Egyptian General Petroleum Corporation and Conoco, scale 1:500,000.
  • Kodolanyi, J., Pettke, T., Spandler, C., Kamber, B.S., and Gmeling, K., 2012, Geochemistry of Ocean Floor and Fore-arc Serpentinites: Constraints on the Ultramafic Input to Subduction Zones: Journal of Pertology, v. 53, no. 2, p. 235–270.
  • Lago, B.L., Rabinowicz, M., and Nicolas, A., 1982, Podiform chromite ore bodies: A genetic model: Journal of Petrology, v. 23, p. 103–125. doi:10.1093/petrology/23.1.103.
  • Le Bas, M.J., 1962, The role of aluminum in igneous clinopyroxenes with relation to their parentage: American Journal of Science, v. 260, p. 267–288. doi:10.2475/ajs.260.4.267.
  • Le Roux, V., Bodinier, J.L., Tommasi, A., Alard, O., Dautria, J.M., Vauchez, A., and Riches, A.J.V., 2007, The Lherz spinel lherzolite: Refertilized rather than pristine mantle: Earth and Planetary Science Letters, v. 259, p. 599–612. doi:10.1016/j.epsl.2007.05.026.
  • Leake, B.E., 1965, The relationship between tetrahedral aluminium and the maximum possible octahedral in natural calciferous and subcalciferous amphiboles: American Mineralogist: Journal of Earth and Planetary Materials, v. 50, no. 7–8, p. 843–851.
  • Leake, B.E., 1997, Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names: American Mineralogist: Journal of Earth and Planetary Materials, v. 82, p. 1019–1037.
  • Li, X.P., Rahn, M., and Bucher, K., 2004, Serpentinites of the Zermatt-Saas ophiolite complex and their texture evolution: Journal of Metamorphic Geology, v. 22, p. 159–177. doi:10.1111/j.1525-1314.2004.00503.x.
  • Lindsley, D.H., and Anderson, D.J., 1983, A two-pyroxene thermometer. Proc. 13th Luna Planet. Scientific Conference, part 2: Journal of Geophysical Research, v. 88, p. 887–906. doi:10.1029/JB088iS02p0A887.
  • Maurel, C., and Maurel, P., 1982, Étude expérimentale de la distribution de l’aluminium entre bain silicaté basique et spinelle chromifère. Implications pétrogénétiques: Teneur en chrome des spinelles: Bulletin De Minéralogie, v. 105, p. 197–202. doi:10.3406/bulmi.1982.7605.
  • McDonough, W.F., and Sun, S.S., 1995, The composition of the Earth: Chemical Geology, v. 120, p. 223–253. doi:10.1016/0009-2541(94)00140-4.
  • Mellini, M., Rumori, C., and Viti, C., 2005, Hydrothermally reset magmatic spinels in retrograde serpentinites: Formation of “ferritchromit” rims and chlorite aureoles: Contributions to Mineralogy and Petrology, v. 149, p. 266–275. doi:10.1007/s00410-005-0654-y.
  • Miranda, E.A., and Dilek, Y., 2010, Oceanic core complex development in modern and ancient oceanic lithosphere: Gabbro-localized versus peridotite-localized detachment models: The Journal of Geology, v. 118, no. 1, p. 95–109. doi:10.1086/648460.
  • Miura, M., Arai, S., Ahmed, A.H., Mizukami, T., Okuno, M., and Yamamoto, S., 2012, Podiformchromitite classification revisited: A comparison of discordant and concordant chromitite pods from Wadi Hilti, northern Oman ophiolite: Journal of Asian Earth Sciences, v. 59, p. 52–61. doi:10.1016/j.jseaes.2012.05.008.
  • Moghadam, H.S., Khedr, M.Z., Arai, S., Stern, R.J., Ghorbani, G., Tamura, A., and Ottley, C.J., 2015, Arc-related harzburgite–Dunite–Chromitite complexes in the mantle section of the Sabzevar ophiolite, Iran: A model for formation of podiform chromitites: Gondwana Research, v. 27, p. 575–593. doi:10.1016/j.gr.2013.09.007.
  • Mondal, S.K., Ripley, E.M., Li, C., and Frei, R., 2006, The genesis of Archaean chromitites from the Nuasahi and Sukinda massifs in the Singhbhum Craton, India: Precambrian Research, v. 148, p. 45–66. doi:10.1016/j.precamres.2006.04.001.
  • Moody, J.B., 1976, Serpentinization: A review: Lithos, v. 9, p. 125–138. doi:10.1016/0024-4937(76)90030-X.
  • Moore, D.E., and Rymer, M.J., 2007, Talc-bearing serpentinite and the creeping section of the San Andreas fault: Nature, v. 448, p. 595–597. doi:10.1038/nature06064.
  • Morimoto, N.F.J., Ferguson, A.K., Ginzburg, I.V., Ross, M., Seifert, F.A., and Zussmaann, I., 1988, Nomenclature of pyroxene: Mineralogical Magazine, v. 52, p. 535–550. doi:10.1180/minmag.1988.052.367.15.
  • Murata, K., Maekawa, H., Yokose, H., Yamamoto, K., Fujioka, K., Ishii, T., Chiba, H., and Wada, Y., 2009, Significance of serpentinization of wedge mantle peridotites beneath Mariana forearc, western Pacific: Geosphere, v. 5, p. 90–104. doi:10.1130/GES00213.1.
  • Nadoll, P., Angerer, A., Mauk, J.L., Frenchd, D., and Walshe, J., 2014, The chemistry of hydrothermal magnetite: A review: Ore Geology Reviews, v. 61, p. 1–32. doi:10.1016/j.oregeorev.2013.12.013.
  • Nadoll, P., Mauk, J.L., Hayes, T.S., Koenig, A.E., and Box, S.E., 2012, Geochemistry of magnetite from hydrothermal ore deposits and host rocks of the Mesoproterozoic Belt Supergroup, United States: Economic Geology, v. 107, p. 1275–1292. doi:10.2113/econgeo.107.6.1275.
  • Nassief, M.O., Macdonald, R., and Gass, I.G., 1984, The Jabal Thurwah upper Proterozoic ophiolite complex, western Saudi Arabia: Journal of Geological Society of London, v. 141, p. 537–546. doi:10.1144/gsjgs.141.3.0537.
  • Niu, Y., 2004, Bulk-rock major and trace element compositions of abyssal peridotites: Implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges: Journal of Petrology, v. 45, p. 2423–2458. doi:10.1093/petrology/egh068.
  • Nozaka, T., 2010, A note on compositional variation of olivine and pyroxene in thermally metamorphosed ultramafic complexes from SW Japan. Okayama University: Earth Science Reports, v. 17, no. 1, p. 1–5.
  • Obeid, M.A., Khalil, A.E.S., and Azer, M.K., 2016, Mineralogy, geochemistry and geotectonic significance of the Neoproterozoic ophiolite of Wadi Arais area, south Eastern Desert, Egypt: International Geology Reviews, v. 58, p. 687–702. doi:10.1080/00206814.2015.1105727.
  • Ohara, Y., and Ishii, T., 1998, Peridotites from southern Marian forearc: Heterogeneous fluids supply in mantle wedge: Island Arc, v. 7, p. 541–558. doi:10.1111/j.1440-1738.1998.00209.x.
  • Ozawa, K., 1994, Melting and melt segregation in the mantle wedge above a subduction zone: evidence from the chromite-bearing peridotites of the miyamori ophiolite complex, Northeastern Jaban: Journal Of Petrology, v. 35, p. 647-678.
  • Pallister, J.S., Stacey, J.S., Fischer, L.B., and Premo, W.R., 1988, Precambrian ophiolites of Arabia: Geologic settings, U-BP geochronology, BP-isotope characteristics, and implications for continental accretion: Precambrian Research, v. 38, p. 1–54. doi:10.1016/0301-9268(88)90092-7.
  • Parkinson, I.J., and Arculus, R.J., 1999, The redox state of subduction zone: Insights from arc peridotites: Chemical Geology, v. 160, p. 409–423. doi:10.1016/S0009-2541(99)00110-2.
  • Parkinson, I.J., Arculus, R.J., and Eggins, S.M., 2003, Peridotite xenoliths from Grenada, Lesser Antilles Island Arc: Contributions to Mineralogy and Petrology, v. 146, p. 241–262. doi:10.1007/s00410-003-0500-z.
  • Parkinson, I.J., and Pearce, J.A., 1998, Peridotites from the Izu-Bonin-Mariana forearc (ODP Leg 125): Evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting: Journal of Petrology, v. 39, p. 1577–1618. doi:10.1093/petroj/39.9.1577.
  • Parkinson, I.J., Pearce, J.A., Thirlwall, M.F., Johnson, K.T.M., and Ingram, G., 1992, Trace element geochemistry of peridotites from the izu-bonin-mariana forearc, Leg 125: Proceedings Of Ocean Drilling Program, Scientific Results, v. 125, p. 487-506.
  • Paulick, H., Bach, W., Godard, M., De Hoog, J.C.M., Suhr, G., and Harvey, J., 2006, Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15820ʹN, ODP Leg 209): Implications for fluid/rock interaction in slow spreading environments: Chemical Geology, v. 234, p. 179–210. doi:10.1016/j.chemgeo.2006.04.011.
  • Peacock, S.M., 1987, Serpentinization and infiltration metasomatism in the trinity peridotite, Klamath province, northern California: Implications for subduction zones: Contributions to Mineralogy and Petrology, v. 95, p. 55–70. doi:10.1007/BF00518030.
  • Pearce, J.A., Barker, P.F., Edwards, S.J., Parkinson, I.J., and Leat, P.T., 2000, Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic: Contributions to Mineralogy and Petrology, v. 139, no. 1, p. 36–53. doi:10.1007/s004100050572.
  • Peters, D., Bretscher, A., John, T., Scambelluri, T., and Pettke, T., 2017, Fluid-mobile elements in serpentinites: Constraints on serpentinization environments and element cycling in subduction zones: Chemical Geology, v. 466, p. 654–666. doi:10.1016/j.chemgeo.2017.07.017.
  • Proenza, J., Gervilla, F., Melgarejo, J.C., and Bodinier, J.L., 1999, Al- and Cr-rich chromitites from the Mayari–Baracoa Ophiolitic Belt (eastern Cuba): Consequence of interaction between volatile-rich melts and peridotite in suprasubduction mantle: EconomicGeology, v. 94, p. 547–566.
  • Purvis, A.C., Nesbitt, R.W., and Hallburg, J.A., 1972, The geology of part of the Carr Boyd Complex and its associated nickel mineralization, Western Australia: Economic Geology, v. 67, no. 8, p. 1093–1113. doi:10.2113/gsecongeo.67.8.1093.
  • Ray, G.E., and Webster, I.C.L., 2007, Geology and chemistry of the low Ti magnetite-bearing Heff Pearce JA, Barker PF, Edwards SJ, Parkinson IJ, Leat PT (2000) Geochemical and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic: Contributions to Mineralogy and Petrology, v. 139, p. 36–53.
  • Reagan, M.K., Ishizuka, O., Stern, R.J., Kelley, K.A., Ohara, Y., Blichert-Toft, J., Bloomer, S.H., Cash, J., Fryer, P., Hanan, B.B., Hickey-Vargas, R., Ishii, T., Kimura, J.I., Peate, D.W., Rowe, M.C., and Woods, M., 2010, Fore-arc basalts and subduction initiation in the Izu– Bonin–Mariana system: Geochemistry, Geophysics, Geosystems, v. 11, no. 3. doi:10.1029/2009GC002871.
  • Rogkala, A., Petrounias, P., Tsikouras, B., Giannakopoulou, P.P., and Hatzipanagiotou, K., 2019, Mineralogical evidence for partial melting and melt-rock interaction processes in the mantle peridotites of Edessa Ophiolite (North Greece): Minerals, v. 9, no. 2, p. 120. doi:10.3390/min9020120.
  • Saccani, E., and Tassinari, R., 2015, The role of MORB and SSZ magma-types in the formation of Jurassic ultramafic cumulates in the Mirdita ophiolites (Albania) as deduced from chromian spinel and olivine chemistry: Ofioliti, v. 40, p. 37–56.
  • Sadek, M.F., 2005, Geology and spectral characterization of the basement rocks at Gabal Gerf area, southeastern Egypt, in Remote sensing for environmental monitoring, GIS applications, and geology: International Society for Optics and Photonics, v. 5983, p. 59830Q.
  • Salem, I.A., Ghoneim, M.F., Zahran, A.A., and Hamdy, M.M., 1997, Petrology and genesis of the ultramafic-hosted vein magnesite deposits at G. El-Rubshi, central Eastern Desert, Egypt, in 3rd International Conference on Geochemistry: Egypt, Alexandria University, p. 241–267.
  • Seifert, K., and Brunotte, D., 1996, Geochemistry of serpentinized mantle peridotite from site 897 in the Iberia Abyssal Plain, in Whitmarsh, R.B., Sawyer, D.S., Klaus, A., and Masson, D.G., (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 149: College Station, TX, Ocean Drilling Program, p. 413–424.
  • Seyler, M., Lorand, J.P., Dick, H.J.B., and Drouin, M., 2007, Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15º 20´N: ODP Hole 1274A: Contributions to Mineralogy and Petrology, v. 153, no. 3, p. 303–319. doi:10.1007/s00410-006-0148-6.
  • Shipboard Scientific Party, 2004, Leg 209 summary: Drilling mantle peridotite along the Mid-Atlantic Ridge from 14 to 16 N: Sites 1268–1275, in Kelemen, P.B., Kikawa, E., Miller, D.J., et al., (Eds.), Proceedings of ODP, Initial Reports 209: College Station TX, Ocean Drilling Program, p. 1–139.
  • Snow, J.E., and Dick, H.J.B., 1995, Pervasive magnesium loss by marine weathering of peridotite: Geochimica Et Cosmochimica Acta, v. 59, p. 4219–4235. doi:10.1016/0016-7037(95)00239-V.
  • Stern, R.J., 2004, Subduction initiation: Spontaneous and induced: Earth and Planetary Science Letters, v. 226, p. 275–292. doi:10.1016/S0012-821X(04)00498-4.
  • Stern, R.J., and Gwinn, C.J., 1990, Origin of late precambrian intrusive carbonates, Eastern Desert of Egypt and Sudan: C, O, and Sr isotopic evidence: Precambrian Research, v. 46, no. 3, p. 259–272. doi:10.1016/0301-9268(90)90005-B.
  • Stern, R.J., Johanson, P.R., Kröner, A., and Yibas, B., 2004, Neoproterozoic ophiolites of the Arabian-Nubian Shield, in Kusky, T.M., ed., Precambrian ophiolites and related rocks: Developments in Precambrian Geology, v. 13, p. 95–128.
  • Stevens, R.E., 1944, Composition of some Cr-spinels of the western hemisphere: American Mineralogist, v. 29, no. 1–2, p. 1–34.
  • Suita, M.T., and Streider, A.J., 1996, Cr-spinels from Brazilian mafic–Ultramafic complexes: Metamorphic modifications: International Geology Review, v. 38, no. 3, p. 245–267. doi:10.1080/00206819709465333.
  • Surour, A.A., 2016, Chemistry of serpentine “polymorphs” in the Pan-African serpentinites from the Eastern Desert of Egypt, with an emphasis on the effect of superimposed thermal metamorphism: Mineralogy and Petrology, v. 111, p. 99–119. doi:10.1007/s00710-016-0460-4.
  • Takahashi, E., 1987, Origin of basaltic magmas–Implications from peridotite melting experiments and an olivine fractionation model: Bulletin of the Volcanological Society of Japan, v. 30, p. 17–40.
  • Takla, M.A., Basta, F.F., and Surour, A.A., 1991, Chloritites at the contacts of some ophiolitic ultamafics, Eastern Desert, Egypt: Egyptian Mineralogist, v. 3, p. 151–165.
  • Takla, M.A., Basta, F.F., and Surour, A.A., 1992, Petrology and mineral chemistry of rodingites associating the Pan-African ultramafics of Sikait-Abu Rusheid area, south Eastern Desert, Egypt: International Conference on Geology of the Arab World, Cairo University, p. 492–507.
  • Takla, M.A., and Noweir, M.A., 1980, Mineralogy and mineral chemistry of the ultramafic mass of El-Rubshi, Eastern Desert, Egypt: Neues Jahrb Mineral Abh, v. 140, p. 17–28.
  • Uysal, I., Kaliwoda, M., Karsli, O., Tarkian, M., Sadiklar, M.B., and Ottley, C.J., 2007, Compositional variations as a result of partial melting and melt–Peridotite interaction in an upper mantle section from the Ortaca area, southwestern Turkey: Canadian Mineralogist, v. 45, no. 6, p. 1471–1493. doi:10.3749/canmin.45.6.1471.
  • Uysal, I., Sen, A.D., Ersoy, E.Y., Dilek, Y., Saka, S., Zaccarini, F., Escayola, M., and Karslı, O., 2014, Geochemical make-up of oceanic peridotites from NW Turkey and the multi-stage melting history of the Tethyan upper mantle: Mineralogy and Petrology, v. 108, p. 49–69. doi:10.1007/s00710-013-0277-3.
  • Varfalvy, V., Hébert, R., Bédard, J.H., and Lafléche, M.R., 1997, Petrology and geochemistry of pyroxenite dykes in upper mantle peridotites of the North Arm Mountain Massif, Bay of Island ophiolite, Newfoundland: Implications for the genesis of boninitic and related magmas: The Canadian Mineralogist, v. 35, p. 543–570.
  • Wang, X., Zeng, Z., and Chen, J., 2009, Serpentinization of peridotites from the southern Mariana forearc: Progress in Natural Science, v. 19, p. 1287–1295. doi:10.1016/j.pnsc.2009.04.004.
  • Whattam, S.A., and Stern, R.J., 2011, The ‘subduction initiation rule’: A key for linking ophiolites, intra-oceanic forearcs and subduction initiation: Contributions to Mineralogy and Petrology, v. 162, p. 1031–1045. doi:10.1007/s00410-011-0638-z.
  • Will, T.M., Powell, R., and Holland, T.J.B., 1990, A calculated petrogenetic grid for ultramafic rocks in the system CaO-FeO-MgO-Al2O3-SiO2-CO2-H2O at low pressures: Contributions to Mineralogy and Petrology, v. 105, p. 347–358. doi:10.1007/BF00306544.
  • Wilson, M., 1989, Igneous petrogenesis: London, Unwin Hyman, 446 p.
  • Yang, S.H., and Zhou, M.F., 2009, Geochemistry of the ~ 430‒Ma Jingbulake mafic‒ultramafic intrusion in Western Xinjiang, NM China: Implications for subduction related magmatism in the South Tianshan orogenic belt: Lithos, v. 113, p. 259‒273. doi:10.1016/j.lithos.2009.07.005.
  • Yoder, H.S., 1967, Spilites and serpentinites: Carnegie Inst Washington,Year Book, v. 65, p. 269–279.
  • Zakrutkin, V.V., and Grigorenko, M.W., 1967, Titanium and alkalies in amphiboles in metamorphism: Doklady of the Academy of Sciences U.S.S.R. Earth Science, v. 173, p. 917–918.
  • Zang, W., and Fyfe, W.S., 1995, Chloritization of the hydrothermally altered bedrock at the Igarape Bahia gold deposite, Carajas, Brazil: Mineralium Deposita, v. 30, p. 30–38. doi:10.1007/BF00208874.
  • Zhou, M.F., Robinson, P.T., and Bai, W.J., 1994, Formation of podiform chromitites by melt/rock interaction in the upper mantle: Mineralium Deposita, v. 29, p. 98–101. doi:10.1007/BF03326400.
  • Zhou, M.F., Robinson, P.T., Malpas, J., Edwards, S.J., and Qi, L., 2005, REE and PGE geochemical constraints on the formation of dunites in the Luobusa Ophiolite, southern Tibet: Journal of Petrology, v. 46, no. 3, p. 615–639.
  • Zimmer, M., Kröner, A., Jochum, K.P., Reischmann, T., and Todt, W., 1995, The Gabal Gerf complex: A Precambrian N-MORB ophiolite in the Nubian Shield, NE Africa: Chemical Geology, v. 123, p. 29–51. doi:10.1016/0009-2541(95)00018-H.
  • Zoheir, B.A., and Lehmann, B., 2011, Listvenite-lode association at Barramiya gold mine, Eastern Desert, Egypt: Ore Geology Reviews, v. 39, p. 101–115. doi:10.1016/j.oregeorev.2010.12.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.