751
Views
7
CrossRef citations to date
0
Altmetric
Research Article

The Peltetec ophiolitic belt (Ecuador): a window to the tectonic evolution of the Triassic margin of western Gondwana

, ORCID Icon, , , &
Pages 2232-2256 | Received 25 Jun 2020, Accepted 26 Sep 2020, Published online: 28 Oct 2020

References

  • Arevalo, R., and McDonough, W., 2010, Chemical variations and regional diversity observed in MORB: Chemical Geology, v. 271, p. 70–85. doi:https://doi.org/10.1016/j.chemgeo.2009.12.013.
  • Aspden, J., Bonilla, W., and Duque, P., 1995, The El Oro Metamorphic Complex, Ecuador: Geology and Economic Mineral Deposits: Overseas Geol: Mineral Resource, v. 67, p. 63. British Geol. Surv. Publ., Keyworth, Nottingham, England.
  • Aspden, J., Fortey, N., Litherland, M., Viteri, F., and Harrison, M., 1992, Regional S-type granites in the Ecuadorian Andes: Possible remnants of the breakup of western Gondwana: Journal of South American Earth Sciences, v. 6, no. 3, p. 123–132. doi:https://doi.org/10.1016/0895-9811(92)90002-G.
  • Aspden, J., and Litherland, M., 1992, The geology and Mesozoic collisional history of the Cordillera Real, Ecuador: Tectonophysics, v. 205, p. 187–204. doi:https://doi.org/10.1016/0040-1951(92)90426-7.
  • Bea, F., Bortnikov, N., Montero, P., Zinger, T., Sharkov, E., Silantyev, S., Skolotnev, S., Trukhalev, A., and Molina-Palma, J., 2020, Zircon xenocryst evidence for crustal recycling at the Mid-Atlantic Ridge: Lithos, v. 354–355, p. 105361. doi:https://doi.org/10.1016/j.lithos.2019.105361.
  • Black, L., Kamo, S., Allen, C., Aleinikoff, J., Davis, D., Korsch, J., and Foudolis, C., 2003, TEMORA 1: A new zircon standard for Phanerozoic U–Pb geochronology: Chemical Geology, v. 200, p. 155–170. doi:https://doi.org/10.1016/S0009-2541(03)00165-7.
  • Bosch, D., Gabriele, P., Lapierre, H., Malfere, J.L., and Jaillard, E., 2002, Geodynamic significance of the Raspas Metamorphic Complex (SW Ecuador): Geochemical and isotopic constraints: Tectonophysics, v. 345, p. 83–102. doi:https://doi.org/10.1016/S0040-1951(01)00207-4.
  • Bouvier, A., Vervoort, J., and Patchett, P., 2008, The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets: Earth and Planetary Science Letters, v. 273, no. 1–2, p. 48–57. doi:https://doi.org/10.1016/j.epsl.2008.06.010.
  • Bustamante, A., Juliani, C., Essene, E.J., Hall, C., and Hyppolito, T., 2012, Geochemical con straints on blueschist-facies rocks of the Central Cordillera of Colombia: The Andean Barragán region: International Geology Review, v. 54, p. 1013–1030. doi:https://doi.org/10.1080/00206814.2011.594226.
  • Cabanis, B., and Lécolle, M., 1989, Le diagramme La/10, Y/15, Nb/8: Un outil pour la discrimination des séries volcaniques et la mise en évidencedes processus de mélange et/ou contamination crustale: Comptes Rendus de l’Academie des Sciences Series II, v. 309, p. 2023–2029.
  • Cardona, A., León, S., Jaramillo, J.S., Valencia, V., Zapata, S., Pardo–Trujillo, A., Schmitt, A.K., Mejía, D., and Arenas, J.C., 2020, Cretaceous record from a Mariana to an Andean–type margin in the Central Cordillera of the Colombian Andes, in Gómez, J., and Pinilla–Pachon, A.O., eds., The Geology of Colombia, Volume 2 Mesozoic: Bogotá, Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 36, p.353–395. doi:https://doi.org/10.32685/pub.esp.36.2019.10.
  • Cardona, A., Valencia, V., Garzón, A., Montes, C., Ojeda, G., Ruiz, J., and Weber, M., 2010, Permian to Triassic I to S-type magmatic switch in the northeast Sierra Nevada de Santa Marta and adjacent regions, Colombian Caribbean: Tectonic setting and implications within Pangea paleogeography: Journal of South American Earth Sciences, v. 29, p. 772–783. doi:https://doi.org/10.1016/j.jsames.2009.12.005.
  • Chappell, B.W., and White, A.J.R., 2001, Two contrasting granite types: 25 years later: Australian Journal of Earth Sciences, v. 48, no. 4, p. 489–499.
  • Chew, D., Schaltegger, U., Košler, J., Whitehouse, M., Gutjahr, M., Spikings, R., and Miškovíc, A., 2007, U–Pb geochronologic evidence for the evolution of the Gondwanan margin of the north-central Andes: Geological Society of America Bulletin, v. 119, p. 697–711. doi:https://doi.org/10.1130/B26080.1.
  • Chiaradia, M., Vallance, J., Fontboté, L., Stein, H., Schaltegger, U., Coder, J., Richards, J., Villeneuve, M., and Gendall, I., 2009, U-Pb, Re-Os and Ar/Ar geochronology of the Nambija Au-skarn and Pangui porphyry Cu deposits, Ecuador: Implications for the Jurassic metallogenic belt of the northern Andes: Mineralium Deposita, v. 44, p. 371–387. doi:https://doi.org/10.1007/s00126-008-0210-6.
  • Cochrane, R., Spikings, R., Gerdes, A., Ulianov, A., Mora, A., Villagómez, D., Putlitz, B., and Chiaradia, M., 2014a, Permo-Triassic anatexis, continental rifting and the disassembly of western Pangaea: Lithos, v. 190–191, p. 383–402. doi:https://doi.org/10.1016/j.lithos.2013.12.020.
  • Cochrane, R., Spikings, R., Gerdes, A., Winkler, W., Ulianov, A., Mora, A., and Chiaradia, M., 2014b, Distinguishing between in-situ and accretionary growth of continents along active margins: Lithos, v. 202–203, p. 382–395. doi:https://doi.org/10.1016/j.lithos.2014.05.031.
  • Correa-Martínez, A., 2007, Petrogenesis and Evolution of Aburrá Ophiolite, Colombian Andes, Central Range [Ph.D. thesis]: University of Brasilia.
  • Correa-Martínez, A., Martens, U., and Rodríguez, G., 2020, Collage of tectonic slivers abutting the eastern Romeral Fault System in central Colombia: Journal of South American Earth Sciences, v. 104, p. 102794. doi:https://doi.org/10.1016/j.jsames.2020.102794.
  • Dilek, Y., and Furnes, H., 2011, Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere: Geological Society of America Bulletin, v. 123, p. 387–411. doi:https://doi.org/10.1130/B30446.1.
  • Dilek, Y., and Furnes, H., 2014, Ophiolites and their origins: Elements, v. 10, p. 93–100. doi:https://doi.org/10.2113/gselements.10.2.93.
  • Dilek, Y., Furnes, H., and Shallo, M., 2008, Geochemistry of the Jurassic Mirdita ophiolite (Albania) and the MORB to SSZ evolution of a marginal basin oceanic crust: Lithos, v. 100, p. 174–209. doi:https://doi.org/10.1016/j.lithos.2007.06.026.
  • Drobe, J., Lindsay, D., Stein, H., and Gabites, J., 2013, Geology, Mineralization, and Geochronological Constraints of the Mirador Cu-Au Porphyry District, Southeast Ecuador: Economic Geology, v. 108, p. 11–35. doi:https://doi.org/10.2113/econgeo.108.1.11.
  • Egüez, A., Gaona, M., and Albán, A., 2017, Mapa Geológico de la República del Ecuador: Instituto Nacional de Investigación Geológico Minero Metalúrgico, Quito – Ecuador, scale 1: 1 000 000.
  • Feininger, T., 1978, Geologic Map of Western El Oro Province. Escuela Politecnica Nacional, Quito, Ecuador, scale 1:50.000.
  • Floyd, P.A., and Winchester, J.A., 1978, Identification and discrimination of altered and metamorphosed volcanic rocks using immobile elements: Chemical Geology, v. 21, p. 291–306. doi:https://doi.org/10.1016/0009-2541(78)90050-5.
  • Fortey, N.J., 1990, Petrographic data and course notes for the Cordillera Real Project, Ecuador. British Geological Survey Technical Report WG/90/14/R, 67pp.
  • Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., and Frost, C.D., 2001, A geochemical classification for granitic rocks: Journal of Petrology, v. 42, no. 11, p. 2033–2048. doi:https://doi.org/10.1093/petrology/42.11.2033.
  • Furnes, H., and Dilek, Y., 2017, Geochemical characterization and petrogenesis of intermediate to silicic rocks in ophiolites: A global synthesis: Earth-Science Reviews, v. 166, p. 1–37. doi:https://doi.org/10.1016/j.earscirev.2017.01.001.
  • Gabriele, P., 2002, HP terranes exhumation in an active margin setting: Geology, petrology and geochemistry of the Raspas Complex in SW Ecuador [Unpublished PhD Thesis]: Switzerland, University of Lausanne.
  • Gale, A., Dalton, C.A., Langmuir, C.H., Su, Y., and Schilling, J.G., 2013, The mean composition of ocean ridge basalts: Geochemistry, Geophysics, Geosystems, v. 14, p. 489–518. doi:https://doi.org/10.1029/2012GC004334.
  • Garcia-Casco, A., Restrepo, J.J., Correa-Martínez, A.M., Blanco-Quintero, I.F., Proenza, J.A., Weber, M., and Butjosa, L., 2020, The petrologic nature of the “Medellin Dunite” revisited. An algebraic approach and proposal of a new definition of the geological body, in Tapias, J.G., ed., The Geology of Colombia Volume 2: (Chapter 2), Servicio Geológico Colombiano, p. 33–51. doi:https://doi.org/10.32685/pub.esp.36.2019.02.
  • García-Ramírez, C.A., Ríos-Reyes, C.A., Castellanos-Alarcón, O.M., and Mantilla-Figueroa, L.C., 2017, Petrology, geochemistry and geochronology of the Arquía Complex´ s metabasites at the Pijao-Génova sector, Central Cordillera, Colombian Andes: Boletín de Geología, v. 39, no. 1, p. 105–126.
  • Govindaraju, K., 1994, Compilation of working values and sample description for 383 geostandards: Geostandards and Geoanalytical Research, v. 18, p. 1–158. doi:https://doi.org/10.1111/j.1751-908X.1994.tb00502.x.
  • Grant, J.A., 1986, The isocon diagrama simple solution to Gresens equation for metasomatic alteration: Economic Geology, v. 81, p. 1976–1982. doi:https://doi.org/10.2113/gsecongeo.81.8.1976.
  • Grant, J.A., 2005, Isocon analysis: A brief review of the method and applications: Physics and Chemistry of the Earth, v. 30, p. 997–1004. doi:https://doi.org/10.1016/j.pce.2004.11.003.
  • Gresens, R.L., 1967, Composition–volume relationships of metasomatism: Chemical Geology, v. 2, p. 47–55. doi:https://doi.org/10.1016/0009-2541(67)90004-6.
  • Herron, M., 1988, Geochemical classification of terrigenous sands and shales from core or log data: Journal of Sedimentary Research, v. 58, no. 5, p. 820–829. doi:https://doi.org/10.1306/212F8E77-2B24-11D7-8648000102C1865D.
  • Hofmann, A., and Wilson, A.H., 2007, Silicified basalts, bedded cherts and other sea floor alteration phenomena of the 3.4 Ga Nondweni greenstone belt, South Africa, in Van Kranendonk, M.J., Smithies, R.H., and Bennett, V.C., eds., Earth’s Oldest Rocks. Developments in Precambrian Geology, Volume 15: Amsterdam, Elsevier, p.571–605.
  • Ibañez-Mejia, M., Restrepo, J.J., and Garcia-Casco, A., in press, Tectonic juxtaposition of Triassic and Cretaceous meta-(ultra)mafic complexes in the Central Cordillera of Colombia (Medellin area) revealed by zircon U-Pb geochronology and Lu-Hf isotopes, in Sociedade Brasileira de Geologia, ed., Geocronologia e tectônica do continente Sul Americano: A contribuição de Umberto Giuseppe Cordani: Wilson, Teixeira, Benjamim de Brito Neves e Andrea Bartorelli, p. 418–443.
  • Irvine, T., and Baragar, W., 1971, A guide to the chemical classification of the common volcanic rocks: Canadian Journal of Earth Science, v. 8, p. 523–548. doi:https://doi.org/10.1139/e71-055.
  • Ishikawa, Y., Sawaguchi, T., Iwaya, S., and Horiuchi, M., 1976, Delineation of prospecting targets for Kuroko deposits based on modes of volcanism of underlying dacite and alteration halos: Mining Geology, v. 26, p. 105–117. (in Japanese with English abs.).
  • Ishizuka, O., Tani, K., Reagan, M.K., Kanayama, K., Umino, S., Harigane, Y., Sakamoto, I., Miyajima, Y., Yuasa, M., and Dunkley, D.J., 2011, The timescales of subduction initiation and subsequent evolution of an oceanic island arc: Earth and Planetary Science Letters, v. 306, p. 229–240. doi:https://doi.org/10.1016/j.epsl.2011.04.006.
  • Jaillard, E., Ordoñez, M., Bengtson, P., Berrones, G., Bonhomme, M., Jiménez, N., and Zambrano, I., 1996, Sedimentary and tectonic evolution of the arc zone of southwestern Ecuador during Late Cretaceous and Early Tertiary times: Journal of South American Earth Science, v. 9, p. 131–140. doi:https://doi.org/10.1016/0895-9811(96)00033-8.
  • John, T., Scherer, E.E., Schenk, V., Herms, P., Halama, R., and Garbe-Schönberg, D., 2010, Subducted seamounts in an eclogite-facies ophiolite sequence: The Andean Raspas Complex, SW Ecuador: Contributions to Mineralogy and Petrology, v. 159, p. 265–284. doi:https://doi.org/10.1007/s00410-009-0427-0.
  • Kelemen, P., Hanghøj, K., and Greene, A., 2014, One view of the geochemistry of subduction-related magmatic arcs, with an emphasison primitive andesite and lower crust. The Crust, in Holland, H., and Turekian, K., eds., Treatise on Geochemistry: Oxford, UK, Elsevier-Pergamon, p. 669–701.
  • Kerr, A., Tarney, J., Marriner, G., Nivia, A., Klaver, G., and Saunders, A., 1996, The geochemistry and tectonic setting of late Cretaceous Caribbean and Colombian: Journal of South American Earth Sciences, v. 9, p. 111–120. doi:https://doi.org/10.1016/0895-9811(96)00031-4.
  • Kerr, A.C., White, R.V., Thompson, P.M., Tarnez, J., and Saunders, A.D., 2003, No oceanic plateau–no Caribbean plate? The seminal role of an oceanic plateau in Caribbean plate evolution, in Bartolini, C., Buffler, R.T., and Blickwede, J., eds., The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon Habitats, Basin Formation, and Plate Tectonics: American Association of Petroleum Geologists (AAPG) Memoir, Volume 79: p.126–168. http://archives.datapages.com/data/alt-browse/aapg-special-volumes/mem.htm
  • Large, R.R., Gemmell, J.B., Paulick, H., and Huston, D.L., 2001, The alteration box plot – A simple approach to understanding the relationship between alteration mineralogy and lithogeochemistry associated with volcanic-hosted massive sulfide deposits: Economic Geology, v. 96, p. 957–971.
  • Litherland, M., Aspden, J., and Jemielita, R., 1994, The metamorphic belts of Ecuador: Overseas Memoir of the British Geological Survey, (Nottingham, England), v. 11, no. p, p. 147.
  • Maya, M., and González, H., 1995, Unidades litodémicas en la Cordillera Central de Colombia: Boletín Geológico, INEGEOMINAS, v. 35, p. 43–57.
  • McCulloch, M., Gregory, R., Wasserburg, G., and Taylor, H., 1979, A Neodymiun, Strontium, and oxygen isotopic study of the Cretaceous Samail ophiolite and implications for the petrogenesis ans seawater-hydrothermal alteration of oceanic crust: Earth and Planetary Science Letters, v. 46, p. 201–211. doi:https://doi.org/10.1016/0012-821X(80)90006-0.
  • Menuge, J., Pedersen, R.B., and Furnes, H., 1989, Seawater alteration of the Karmøy Ophiolite Complex, SW Norway: Nd and Sr isotopic evidence: Norsk Geologisk Tidsskrift, v. 69, p. 191–200.
  • Miyashiro, A., 1973, The Troodos ophiolitic complex was probably formed in an island arc: Earth and Planetary Science Letters, v. 19, p. 218–224. doi:https://doi.org/10.1016/0012-821X(73)90118-0.
  • Montero, P., and Bea, F., 1998, Accurate determination of 87Rb/86Sr and 147Sm/144Nd ratios by inductively-coupled-plasma mass spectrometry in isotope geoscience: An alternative to isotope dilution analysis: Analytica chimica acta, v. 358, p. 227–233. doi:https://doi.org/10.1016/S0003-2670(97)00599-0.
  • Noble, R., Aspden, J., and Jemielita, R., 1997, Northern Andean crustal evolution: New U–Pb geochronological constraints from Ecuador: Geologial Society of American Bulletin, v. 109, p. 789–798. doi:https://doi.org/10.1130/0016-7606(1997)109<0789:NACENU>2.3.CO;2.
  • Paul, A.N., Spikings, R.A., Ulianov, A., and Ovtcharova, M., 2018, High temperature (>350°C) thermal histories of the long lived (>500Ma) active margin of Ecuador and Colombia: Apatite, titanite and rutile U- Pb thermochronology: Geochimica et cosmochimica acta, v. 228, p. 275–300. doi:https://doi.org/10.1016/j.gca.2018.02.033.
  • Pearce, J.A., 1982, Trace element characteristics of lavas from destructive plate boundaries, in Thorpe, R.S., ed., Orogenic Andesites: Chichester, U.K, Wiley, p.528–548.
  • Pearce, J.A., 1996, A user’s guide to basalt discrimination diagrams: Geological Association of Canada Special Publication, v. 12, p. 79–113.
  • Pearce, J.A., 2003, Supra-subduction zone ophiolites: The search for modern analogues, in Dilek, Y., and Newcomb, S., eds., Ophiolite concept and the evolution of geological thought: Boulder, Volume 373: Colorado, Geological Society of America Special Paper, p. 269–293.
  • Pearce, J.A., 2008, Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust: Lithos, v. 100, p. 14–48. doi:https://doi.org/10.1016/j.lithos.2007.06.016.
  • Pearce, J.A., 2014, Ophiolites: Immobile elements fingerprinting of ophiolites: Elements, v. 10, no. 2, p. 101–108. doi:https://doi.org/10.2113/gselements.10.2.101.
  • Plank, T., and Langmuir, C., 1998, The chemical composition of subducting sediment and its consequences for the crust and mantle: Chemical Geology, v. 145, p. 325–394. doi:https://doi.org/10.1016/S0009-2541(97)00150-2.
  • Pratt, W.T., Duque, P., and Ponce, M., 2005, An autochthonous geological model for the eastern Andes of Ecuador: Tectonophysics, v. 399, p. 251–278. doi:https://doi.org/10.1016/j.tecto.2004.12.025.
  • Ramos, V.A., 1999, Plate tectonic setting of the Andean Cordillera: Episodes, v. 22, p. 183–190. doi:https://doi.org/10.18814/epiiugs/1999/v22i3/005.
  • Reagan, M.K., Ishizuka, O., Tsukuaba, H., Stern, R.J., Kelley, K.A., Ohara, Y., Blichert-Toft, J., Bloomer, S.H., Cash, J., Fryer, P., Hanan, B.B., Hickey Vargas, R., Ishii, T., Kimura, J.I., Peate, D.W., Rowe, M.C., and Woods, M., 2010, Forearc basalts and subduction initiation in the Izu-Bonin-Mariana system: Geochemistry, Geophysics, Geosystems, v. 11. doi:https://doi.org/10.1029/2009GC002871.
  • Reitsma, M.J., 2012, Reconstructing the Late Paleozoic–Early Mesozoic Plutonic and Sedimentary Record of South-East Peru: Orphaned Back-Arcs Along the Western Margin of Gondwana [PhD thesis] Terre & Environment, 111: Switzerland, University of Geneva, 226 p.
  • Restrepo, J.J., 2008, Obducción y metamorfismo de ofiolitas triásicas en el flanco occidental del Terreno Tahamí, cordillera Central de Colombia: Boletín de Ciencias de la Tierra, v. 22, p. 49–100.
  • Restrepo, J.J., and Toussaint, J., 1988, Terranes and continental accretion in the Colombian Andes: Episodes, v. 11, no. 3, p. 189–193. doi:https://doi.org/10.18814/epiiugs/1988/v11i3/006.
  • Reyes, P., 2006, El complejo ofiolítico Peltetec y su relación con las unidades metamórficas jurásicas de la Cordillera Real [Tesis de Grado]: Quito, Ecuador, EPN, 180 p.
  • Reynaud, C., Jaillard, E., Lapierre, H., Mamberti, M., and Mascle, G., 1999, Oceanic Plateau Island arcs of southwestern Ecuador: Their place in the geodynamic evolution of northwestern South America: Tectonophysics, v. 307, p. 235–254. doi:https://doi.org/10.1016/S0040-1951(99)00099-2.
  • Riding, J., 1989, A palynological investigation of nine rock samples from Ecuador (Maguazo Unit). British Geological Survey Technical Report, WH/89/361/R, 4 p.
  • Riel, N., Guillot, S., Jaillard, E., Martelat, J.-E., Paquette, J.-L., Schwartz, S., Goncalves, P., Duclaux, G., Thebaud, N., and Lanari, P., 2013, Metamorphic and geochronogical study of the Triassic El Oro metamorphic complex, Ecuador: Implications for high-temperature metamorphism in a forearc zone: Lithos, v. 156, p. 41–68. doi:https://doi.org/10.1016/j.lithos.2012.10.005.
  • Riel, N., Martelat, J.E., Guillot, S., Jaillard, E., Monié, P., Yuquilema, J., Duclaux, G., and Mercier, J., 2014, Fore arc tectonothermal evolution of the El Oro metamorphic province (Ecuador) during the Mesozoic: Tectonics, v. 33. doi:https://doi.org/10.1002/2014TC003618.
  • Rojas-Agramonte, Y., Garcia-Casco, A., Kemp, A., Kröner, A., Proenza, J.A., Lázaro, C., and Liu, D., 2016, Recycling and transport of continental material through the mantle wedge above subduction zones: A Caribbean example: Earth and Planetary Science Letters, v. 436, p. 93–107. doi:https://doi.org/10.1016/j.epsl.2015.11.040.
  • Ross, P.S., and Bédard, J.H., 2009, Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace-element discriminant diagrams: Canadian Journal of Earth Sciences, v. 46, p. 823–839. doi:https://doi.org/10.1139/E09-054.
  • Ruiz-Jimenez, E., Blanco, I., Toro, L., Moreno, M., Vinasco, C., García, A., Morata, D., and Gómez, A., 2012, Geoquímica y petrología de las metabasitas del Complejo Arquía (Municipio de Santafé de Antioquia y Río Arquía, Colombia): Implicaciones geodinámicas: Boletín Ciencias de la Tierra, v. 32, p. 65–80.
  • Scott, R.B., and Hajash, A., Jr., 1976, Initial submarine alteration of basaltic pillow lavas: A microprobe study: American Journal of Science, v. 276, p. 480–501. doi:https://doi.org/10.2475/ajs.276.4.480.
  • Seyfried, W.E., Berndt, M.E., and Seewald, J.S., 1988, Hydrothermal alteration processes at mid ocean ridges: Constraints from diabase alteration experiments, hot-spring fluids and composition of the oceanic crust: Canadian Mineralogist, v. 26, p. 787–804.
  • Shervais, J.W., 1982, Ti – V plots and the petrogenesis of modern and ophiolitic lavas: Earth and Planetary Science Letters, v. 59, p. 101–118. doi:https://doi.org/10.1016/0012-821X(82)90120-0.
  • Spikings, R., Cochrane, R., Villagomez, D., Van der Lelij, R., Vallejo, C., Winkler, W., and Beate, B., 2015, The geological history of northwestern South America: From Pangea collision of the Caribbean Large Igneous Province (290 – 75 Ma): Gondwana Research, v. GR-01278, p. 45. doi:https://doi.org/10.1016/j.gr.2014.06.004.
  • Staudigel, H., and Hart, R., 1983, Alteration of basaltic glass: Mechanism and significance for the oceanic crust-seawater budget: Geochimica et cosmochimica acta, v. 47, p. 37–50. doi:https://doi.org/10.1016/0016-7037(83)90257-0.
  • Suhr, N., Rojas-Agramonte, Y., Chew, D.M., André .J, P., Villagómez, D., Toulkeridis, T., and Mertz-Kraus, R., 2019, Detrital-zircon geochronology and provenance of the El Oro Metamorphic Complex, Ecuador: Geodynamic implications for the evolution of the western Gondwana margin: Journal of South American Earth Sciences, v. 90, p. 520–539. doi:https://doi.org/10.1016/j.jsames.2018.12.010.
  • Sun, S.S., and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes: Geological Society of London Special Publication, v. 42, p. 313–345. doi:https://doi.org/10.1144/GSL.SP.1989.042.01.19.
  • Taylor, B., and Martinez, F., 2003, Back-arc basin basalt systematics: Earth and Planetary Science Letters, v. 210, no. 3–4, p. 481–497. doi:https://doi.org/10.1016/S0012-821X(03)00167-5.
  • Taylor, S., and McLennan, S., 1985, The Continental Crust: Its Composition and Evolution: Oxford, London, Edinburgh, Boston, Palo Alto, Melbourne, Blackwell Scientific, p. xvi, 312.
  • Torró, L., Proenza, J.A., Rojas-Agramonte, Y., Garcia-Casco, A., Yang, J., and Yang, Y., 2018, Recycling in the subduction factory: Archaean to Permian zircons in the oceanic Cretaceous Caribbean island-arc (Hispaniola): Gondwana Research, v. 54, p. 23–37. doi:https://doi.org/10.1016/j.gr.2017.09.010.
  • Vallejo, C., Winkler, W., Spikings, R.A., Luzieux, L., Heller, F., and Bussy, F., 2009. Mode and timing of terrane accretion in the forearc of the Andes in Ecuador, in Kay, S.M., Ramos, V.A., and Dickinson, W.R., eds., Backbone of the Americas: Shallow Subduction, Plateau Uplift, and Ridge and Terrane Collision, Volume 204: Geological Society of America Memoirs. p. 197–216.
  • Van der Lelij, R., 2013, Reconstructing North-Western Gondwana with Implications for the Evolution of the Iapetus and Rheic Oceans: A Geochronological, Thermochronological and Geochemical study [PhD thesis] Terre & Environment, 121: Switzerland, University of Geneva, 221 p.
  • Vermeesch, P., 2018, IsoplotR: A free and open toolbox for geochronology: Geoscience Frontiers, v. 9, p. 1479–1493. doi:https://doi.org/10.1016/j.gsf.2018.04.001.
  • Villagómez, D., and Spikings, R., 2013, Thermochronology and tectonics of the Central and Western Cordilleras of Colombia: Early Cretaceous–Tertiary evolution of the Northern Andes: Lithos, v. 168, p. 228–249. doi:https://doi.org/10.1016/j.lithos.2012.12.008.
  • Villagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W., and Beltrán, A., 2011, Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia: Lithos, v. 125, p. 875–896. doi:https://doi.org/10.1016/j.lithos.2011.05.003.
  • Vinasco, C., Cordani, U., González, H., Weber, M., and Pelaez, C., 2006, Geochronological, isotopic, and geochemical data from Permo-Triassic granitic gneisses and granitoids of the Colombian Central Andes: Journal South American Earth Science, v. 21, p. 355–371. doi:https://doi.org/10.1016/j.jsames.2006.07.007.
  • Wakabayashi, J., and Dilek, Y., 2003, What constitutes “emplacement” of an ophiolite? Mechanisms and relationship to subduction initiation and formation of metamorphic soles, in Dilek, Y., and Robinson, P.T., eds., Ophiolites and Earth history, Geological Society of London. London: Special Publication, p. 427–448. doi:https://doi.org/10.1144/GSL.SP.2003.218.01.22.
  • Whattam, S.A., and Stern, R.J., 2011, The “subduction initiation rule”: A key for linking ophiolites, intra-oceanic forearcs, and subduction initiation: Contributions to Mineralogy and Petrology, v. 162, p. 1031–1045. doi:https://doi.org/10.1007/s00410-011-0638-z.
  • Whitney, D., and Evans, B., 2010, Abbreviations for names of rock-forming minerals: American Mineralogist, v. 95, p. 185–187. doi:https://doi.org/10.2138/am.2010.3371.
  • Williams, I., and Claesson, S., 1987, Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides. II: Ion microprobe zircon U–Th–Pb: Contribution to Mineralogy and Petrology, v. 97, p. 205–217. doi:https://doi.org/10.1007/BF00371240.
  • Winter, L.S., Tosdal, R.M., Mortensen, J.K., and Franklin, J.M., 2010, Volcanic Stratigraphy and Geochronology of the Cretaceous Lancones Basin, Northwestern Peru: Position and Timing of Giant VMS Deposits: Bulletin of the Society of Economic Geologist, v. 105, p. 713–742. doi:https://doi.org/10.2113/gsecongeo.105.4.713.
  • Yánez, E., Quilachamín, V., and Reyes, P., 2017, Estudio petrográfico y geoquímico del Arco Alao (Cretácico Inferior) al este de Chambo, provincia de Chimborazo: Implicaciones geodinámicas. VIII Jornadas en Ciencias de la Tierra, Escuela Politécnica Nacional, Quito-Ecuador, 5 p.
  • Zapata, S., Cardona, A., Jaramillo, J., Patiño, A., Valencia, V., León, S., Mejía, D., Pardo-Trujillo, A., and Castañeda, J., 2018, Cretaceous extensional and compressional tectonics in the Northwestern Andes, prior to the collision with the Caribbean oceanic plateau: Gondwana Research, v. 66, p. 207–226. doi:https://doi.org/10.1016/j.gr.2018.10.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.