876
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Quantifying crustal thickness and magmatic temperatures of the Jurassic to Early Cretaceous North-Andean arc

, , ORCID Icon & ORCID Icon
Pages 2544-2564 | Received 26 Feb 2021, Accepted 08 Oct 2021, Published online: 16 Nov 2021

References

  • Anderson, J.L., Barth, A.P., Wooden, J.L., and Mazdab, F., 2008, Thermometers and thermobarometers in granitic systems: Reviews in Mineralogy and Geochemistry, v. 69, no. 1, p. 121–142. 10.2138/rmg.2008.69.4.
  • Anderson, J.L., and Smith, D.R., 1995, The effects of temperature and fO₂ on the Al-in-hornblende barometer: American Mineralogist, v. 80, p. 549–559.
  • Aspden, J.A., McCourt, W.J., and Brook, M., 1987, Geometrical control of subduction-related magmatism: The Mesozoic and Cenozoic plutonic history of western Colombia: Journal of the Geological Society, v. 144, no. 6, p. 893–905. 10.1144/gsjgs.144.6.0893.
  • Bayona, G., Bustamante, C., Nova, G., and Salazar-Franco, A.M., 2020, Jurassic evolution of the northwestern corner of Gondwana: Present knowledge and future challenges in studying Colombian Jurassic rocks, in Gómez, J., and Pinilla-Pachon, A.O., eds., The Geology of Colombia, Bogotá, Volume Vol. 2: Bogotá: Mesozoic, p. 37. 10.32685/pub.esp.36.2019.05.
  • Bayona, G., García, D.F., and Mora, G., 1994, La Formación Saldaña: Producto de la actividad de estratovolcanes continentales en un dominio de retroarco, in Etayo-Serna, F. ed., Estudios geológicos del Valle Superior del Magdalena, Bogotá D.C., Universidad Nacional de Colombia, p. 21
  • Bayona, G., Rapalini, A.E., and Costanzo-Alvarez, V., 2006, Paleomagnetism in Mesozoic rocks of the Northern Andes and its implications in Mesozoic tectonics of northwestern South America: Earth, Planets and Space, v. 58, no. 10, p. 1255–1272. 10.1186/BF03352621.
  • Bea, F., Fershtater, G., and Corretgé, L.G., 1992, The geochemistry of phosphorus in granite rocks and the effect of aluminium: Lithos, v. 29, no. 1–2, p. 43–56. 10.1016/0024-4937(92)90033-U.
  • Blanco-Quintero, I.F., García-Casco, A., Toro, L.M., Moreno, M., Ruiz, E.C., Vinasco, C.J., Cardona, A., Lázaro, C., and Morata, D., 2014, Late Jurassic terrane collision in the northwestern margin of Gondwana (Cajamarca Complex, eastern flank of the Central Cordillera, Colombia): International Geology Review, v. 56, no. 15, p. 1852–1872. 10.1080/00206814.2014.963710.
  • Boehnke, P., Watson, E.B., Trail, D., Harrison, T.M., and Schmitt, A.K., 2013, Zircon saturation re-revisited: Chemical Geology, v. 351, p. 324–334. 10.1016/j.chemgeo.2013.05.028.
  • Bustamante, C., Archanjo, C.J., Cardona, A., Bustamante, A., and Valencia, V.A., 2017, U-Pb ages and Hf isotopes in zircons from parautochthonous Mesozoic terranes in the Western margin of Pangea: Implications for the terrane configurations in the Northern Andes: The Journal of Geology, v. 125, no. 5, p. 487–500. 10.1086/693014.
  • Bustamante, C., Archanjo, C.J., Cardona, A., and Vervoort, J.D., 2016, Late Jurassic to early Cretaceous plutonism in the Colombian Andes: A record of long-term arc maturity: Geological Society of America Bulletin, v. 128, no. 11–12, p. 1762–1779. 10.1130/B31307.1.
  • Bustamante, C., Cardona, A., Bayona, G., Mora, A., Valencia, V., Gehrels, G., and Vervoort, J., 2010, U-Pb LA-ICP-MS geochronology and regional correlation of Middle Jurassic intrusive rocks from the Garzon Massif, Upper Magdalena Valley and Central Cordillera, Southern Colombia: Boletin de Geología, v. 32, p. 93–110.
  • Cao, W., Paterson, S., Saleeby, J., and Zalunardo, S., 2016, Bulk arc strain, crustal thickening, magma emplacement, and mass balances in the Mesozoic Sierra Nevada arc: Journal of Structural Geology, v. 84, p. 14–30. 10.1016/j.jsg.2015.11.002.
  • Castro, A., 1987, On granitoid emplacement and related structures: A review: Geologische Rundschau, v. 76, p. 101–124. 10.1007/BF01820576.
  • Castro, A., 2013, Tonalite–granodiorite suites as cotectic systems: A review of experimental studies with applications to granitoid petrogenesis: Earth-Science Reviews, v. 124, p. 68–95. 10.1016/j.earscirev.2013.05.006.
  • Cediel, F., Shaw, R.P., and Cáceres, C., 2003, Tectonic assembly of the Northern Andean Block, in Bartolini, C., Buffler, R.T., and Blickwede, J., eds., The Circum-Gulf Of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics, Tulsa, American Association of Petroleum Geologists. p. 815–848.
  • Chapman, J.B., Ducea, M.N., DeCelles, P.G., and Profeta, L., 2015, Tracking changes in crustal thickness during orogenic evolution with Sr/Y: An example from the North American Cordillera: Geology, v. 43, no. 10, p. 919–922. 10.1130/G36996.1.
  • Chapman, J.B., Ducea, M.N., Kapp, P., Gehrels, G.E., and DeCelles, P.G., 2017, Spatial and temporal radiogenic isotopic trends of magmatism in Cordilleran orogens: Gondwana Research, v. 48, p. 189–204. 10.1016/j.gr.2017.04.019.
  • Chiaradia, M., 2015, Crustal thickness control on Sr/Y signatures of recent arc magmas: An Earth scale perspective: Scientific Reports, v. 5, no. 1, p. 8115. 10.1038/srep08115.
  • Clavijo, J., Mantilla, L., Pinto, J., Bernal, L., and Pérez, A., 2008, Evolución geológica de la Serranía de San Lucas, norte del Valle Medio del Magdalena y noroeste de la Cordillera Oriental: Boletín de Geología, v. 30, p. 45–62.
  • Cochrane, R., Spikings, R., Gerdes, A., Winkler, W., Ulianov, A., Mora, A., and Chiaradia, M., 2014, Distinguishing between in-situ and accretionary growth of continents along active margins: Lithos, v. 202–203, p. 382–394. 10.1016/j.lithos.2014.05.031.
  • Collins, W.J., Huang, H.Q., and Jiang, X., 2016, Water-fluxed crustal melting produces Cordilleran batholiths: Geology, v. 44, no. 2, p. 143–146. 10.1130/G37398.1.
  • Correa-Martínez, A.M., Martens, U., and Rodríguez, G., 2020, Collage of tectonic slivers abutting the eastern romeral fault system in central Colombia: Journal of South American Earth Sciences, v. 104, p. 102794. 10.1016/j.jsames.2020.102794.
  • Cuadros, F.A., Botelho, N.F., Ordóñez-Carmona, O., and Matteini, M., 2014, Mesoproterozoic crust in the San Lucas Range (Colombia): An insight into the crustal evolution of the northern Andes: Precambrian Research, v. 245, p. 186–206. 10.1016/j.precamres.2014.02.010.
  • De Saint Blanquat, M., Tikoff, B., Teyssier, C., and Vigneresse, J.L., 1998, Transpressional kinematics and magmatic arcs: Geological Society, London, Special Publications, v. 135, no. 1, p. 327–340. 10.1144/GSL.SP.1998.135.01.21.
  • Ducea, M.N., Saleeby, J.B., and Bergantz, G., 2015, The architecture, chemistry, and evolution of continental magmatic arcs: Annual Review of Earth and Planetary Sciences, v. 43, no. 1, p. 299–331. 10.1146/annurev-earth-060614-105049.
  • Farner, M.J., and Lee, C.-T.A., 2017, Effects of crustal thickness on magmatic differentiation in subduction zone volcanism: A global study: Earth and Planetary Science Letters, v. 470, p. 96–107. 10.1016/j.epsl.2017.04.025.
  • Ganne, J., Schellart, W.P., Rosenbaum, G., Feng, X., and De Andrade, V., 2017, Probing crustal thickness evolution and geodynamic processes in the past from magma records: An integrated approach: Geological Society of America Special Papers, v. The Crust-, p. 1–26. 10.1130/2017.2525(01).
  • Geyer, O.F., 1976, La fauna de amonitas del perfil típico de la Formación Morrocoyal, in Etayo-Serna, F. and Cáceres-Girón, C. eds., Memoria Primer Congreso Colombiano de Geología, Bogotá, Universidad Nacional de Colombia, p. 111–134
  • Girardi, J.D., Patchett, P.J., Ducea, M.N., Gehrels, G.E., Cecil, M.R., Rusmore, M.E., Woodsworth, G.J., Pearson, D.M., Manthei, C., and Wetmore, P., 2012, Elemental and isotopic evidence for granitoid genesis from deep-seated sources in the Coast Mountains Batholith, British Columbia: Journal of Petrology, v. 53, no. 7, p. 1505–1536. 10.1093/petrology/egs024.
  • Hammarstrom, J.M., and Zen, E.-A., 1986, Aluminum in hornblende: An empirical igneous geobarometer: American Mineralogist, v. 71, p. 1297–1313.
  • Harrison, T.M., and Watson, E.B., 1984, The behavior of apatite during crustal anatexis: Equilibrium and kinetic considerations: Geochimica et Cosmochimica Acta, v. 48, no. 7, p. 1467–1477. 10.1016/0016-7037(84)90403-4.
  • Holland, T., and Blundy, J., 1994, Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry: Contributions to Mineralogy and Petrology, v. 116, no. 4, p. 433–447. 10.1007/BF00310910.
  • Ji, W.Q., Wu, F.Y., Chung, S.L., and Liu, C.Z., 2014, The Gangdese magmatic constraints on a latest Cretaceous lithospheric delamination of the Lhasa terrane, southern Tibet: Lithos, v. 210–211, p. 168–180. 10.1016/j.lithos.2014.10.001.
  • Kay, S.M., Godoy, E., and Kurtz, A., 2005, Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes: Geological Society of America Bulletin, v. 117, no. 1, p. 67. 10.1130/B25431.1.
  • Kay, S.M., and Mpodozis, C., 2001, Central Andean ore deposits linked to evolving shallow subduction systems and thickening crust: GSA Today : A Publication of the Geological Society of America, v. 11, no. 3, p. 4. 10.1130/1052-5173(2001)011<0004:CAODLT>2.0.CO;2.
  • Kay, S.M., Mpodozis, C., and Coira, B., 1999, Neogene Magmatism, Tectonism, and Mineral Deposits of the Central Ande (22° to 33° S Latitude), in Skinner, B.J. ed., Geology and Ore Deposits of the Central Andes, Society of Economic Geologist, Special Publication, p. 27–59, d o i:1 0.5382/SP.07.02
  • Kay, S.M., Mpodozis, C., and Gardeweg, M., 2014, Magma sources and tectonic setting of Central Andean andesites (25.5–28°S) related to crustal thickening, forearc subduction erosion and delamination: Geological Society, London, Special Publications, v. 385, no. 1, p. 303–334. 10.1144/SP385.11.
  • Leake, B.E., et al., 1997, Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names: American Mineralogist, v. 82, p. 1019–1037. 10.1180/minmag.1997.061.405.13.
  • Leal-Mejía, H., 2011, Phanerozoic gold metallogeny in the Colombian Andes: A tectono-magmatic approach:  España: Universitat de Barcelona, 1000 p.
  • Leal-Mejía, H., Shaw, R.P., and Melgarejo I Draper, J.C., 2019, Spatial-temporal migration of granitoid magmatism and the phanerozoic tectono-magmatic evolution of the Colombian Andes, in Cediel, F., and Shaw, R.P., eds., Geology and Tectonics of Northwestern South America: The Pacific-Caribbean-Andean junction: Cham, Switzerland: Springer, p. 253–410. 10.1007/978-3-319-76132-9_5.
  • Li, C., Wang, Z., Wang, D., Cao, W., Yu, X., Zhou, G., and Gao, W., 2014, Crust-mantle interaction triggered by oblique subduction of the Pacific plate: Geochronological, geochemical, and Hf isotopic evidence from the early Cretaceous volcanic rocks of Zhejiang Province, southeast China: International Geology Review, v. 56, no. 14, p. 1732–1753. 10.1080/00206814.2014.956347.
  • Mamani, M., Worner, G., and Sempere, T., 2010, Geochemical variations in igneous rocks of the Central Andean orocline (13 S to 18 S): Tracing crustal thickening and magma generation through time and space: Geological Society of America Bulletin, v. 122, no. 1–2, p. 162–182. 10.1130/B26538.1.
  • Matzel, J.E.P., Bowring, S.A., and Miller, R.B., 2006, Time scales of pluton construction at differing crustal levels: Examples from the Mount Stuart and Tenpeak intrusions, North Cascades, Washington: Geological Society of America Bulletin, v. 118, no. 11–12, p. 1412–1430. 10.1130/B25923.1.
  • McDonough, W.F., and Sun, S. s., 1995, The composition of the Earth: Chemical Geology, v. 120, p. 223–253. d o i:1 0.1 016/0009-2541(94)00140-4
  • McMillan, N.J., Davidson, J.P., Worner, G., Harmon, R.S., Moorbath, S., and Lopez-Escobar, L., 1993, Influence of crustal thickening on arc magmatism: Nevados de Payachata volcanic region, northern Chile: Geology, v. 21, no. 5, p. 467–470. 10.1130/0091-7613(1993)021<0467:IOCTOA>2.3.CO;2.
  • Miller, C.F., McDowell, S.M., and Mapes, R.W., 2003, Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance: Geology, v. 31, no. 6, p. 529. 10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2.
  • Mutch, E.J.F., Blundy, J.D., Tattitch, B.C., Cooper, F.J., and Brooker, R.A., 2016, An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hornblende geobarometer: Contributions to Mineralogy and Petrology, v. 171, no. 10, p. 85. 10.1007/s00410-016-1298-9.
  • Piraquive, A., Kammer, A., Bernet, M., Cramer, T., von Quadt, A., and Gómez, C., 2021, Neoproterozoic to Jurassic tectono-metamorphic events in the Sierra Nevada de Santa Marta Massif, Colombia: Insights from zircon U-Pb geochronology and trace element geochemistry: International Geology Review, v. 00, p. 1–33. 10.1080/00206814.2021.1961317.
  • Profeta, L., Ducea, M.N., Chapman, J.B., Paterson, S.R., Gonzales, S.M.H., Kirsch, M., Petrescu, L., and DeCelles, P.G., 2015, Quantifying crustal thickness over time in magmatic arcs: Scientific Reports, v. 5, p. 1–7. 10.1038/srep17786.
  • Quandt, D., et al., 2018, The geochemistry and geochronology of Early Jurassic igneous rocks from the Sierra Nevada de Santa Marta, NW Colombia, and tectono-magmatic implications: Journal of South American Earth Sciences, v. 86, p. 216–230. 10.1016/j.jsames.2018.06.019.
  • Ramírez, D.A., Correa-Martínez, A.M., Zapata-Villada, J.P., and Rodríguez, G., 2020, Tectono-magmatic implications of the Jurassic volcanic and volcanoclastic record of the Santa Marta Massif (Colombia): Journal of South American Earth Sciences, v. 104, p. 102866. 10.1016/j.jsames.2020.102866.
  • Ramos, V.A., 2009, Anatomy, and global context of the Andes: Main geologic features, and the Andean orogenic cycle, in Kay, S.M., Ramos, V.A., and Dickinson, W.R. eds., Backbone of the Americas: Shallow Subduction, Plateau Uplift, and Ridge and Terrane Collision, Washington, DC, Geological Society of America, v. 204, p. 31–65. doi:10.1130/2009.1204(02)
  • Restrepo, M., Bustamante, C., Cardona, A., Beltrán-Triviño, A., Bustamante, A., Chavarría, L., and Valencia, V.A., 2021, Tectonic implications of the jurassic magmatism and the metamorphic record at the southern Colombian Andes: Journal of South American Earth Sciences, v. 111, p. 103439. 10.1016/j.jsames.2021.103439.
  • Rodríguez, G., Arango, M.I., Zapata, G., and Bermúdez, J.G., 2018, Petrotectonic characteristics, geochemistry, and U-Pb geochronology of Jurassic plutons in the Upper Magdalena Valley-Colombia: Implications on the evolution of magmatic arcs in the NW Andes: Journal of South American Earth Sciences, v. 81, p. 10–30. 10.1016/j.jsames.2017.10.012.
  • Rodríguez-García, G., Zapata, J.P., Correa-Martínez, A.M., Ramírez, D.A., and Obando, G., 2020, Aportes al conocimiento del plutonismo del Arco Mocoa- Santa Marta durante el Jurásico Temprano-Medio, en la margen noroccidental de los Andes, Colombia: Boletín de Geología, v. 42, no. 3, p. 15–50. 10.18273/revbol.v42n3-2020001.
  • Rooney, T.O., Morell, K.D., Hidalgo, P., and Fraceschi, P., 2015, Magmatic consequences of the transition from orthogonal to oblique subduction in Panama: Geochemistry, Geophysics, Geosystems, v. 16, no. 12, p. 4178–4208. 10.1002/2015GC006150.
  • Sagong, H., Kwon, S.-T., and Ree, J.-H., 2005, Mesozoic episodic magmatism in South Korea and its tectonic implication: Tectonics, v. 24, no. 5, p. n/a–n/a. 10.1029/2004TC001720.
  • Saleeby, J., Ducea, M., and Clemens-Knott, D., 2003, Production and loss of high-density batholithic root, southern Sierra Nevada, California: Tectonics, v. 22, no. 6. 10.1029/2002TC001374.
  • Schmidt, M.W., 1992, Amphibole composition in tonalite as a function of pressure: An experimental calibration of the Al-in-hornblende barometer: Contributions to Mineralogy and Petrology, v. 110, no. 2–3, p. 304–310. 10.1007/BF00310745.
  • Siégel, C., Bryan, S.E., Allen, C.M., and Gust, D.A., 2018, Use and abuse of zircon-based thermometers: A critical review and a recommended approach to identify antecrystic zircons: Earth-Science Reviews, v. 176, p. 87–116. 10.1016/j.earscirev.2017.08.011.
  • Spikings, R., Cochrane, R., Villagomez, D., Van der Lelij, R., Vallejo, C., Winkler, W., and Beate, B., 2015, The geological history of northwestern South America: From Pangaea to the early collision of the Caribbean large igneous province (290–75Ma): Gondwana Research, v. 27, no. 1, p. 95–139. 10.1016/j.gr.2014.06.004.
  • Spikings, R.A., Cochrane, R., Vallejo, C., Villagomez, D., Van der Lelij, R., Paul, A., and Winkler, W., 2019, Latest Triassic to Early Cretaceous tectonics of the Northern Andes: Geochronology, geochemistry, isotopic tracing, and thermochronology, in Horton, B.K. and Folguera, A. eds., Andean Tectonics, Amsterdam, Elsevier, p. 173–208. doi:10.1016/B978-0-12-816009-1.00009-5
  • Stern, R.J., 2002, Subduction zones: Reviews of Geophysics, v. 40, no. 4, p. 1012. 10.1029/2001RG000108.
  • Villagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W., and Beltrán, A., 2011, Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia: Lithos, v. 125, no. 3–4, p. 875–896. 10.1016/j.lithos.2011.05.003.
  • Wang, R., Tafti, R., Hou, Z., Shen, Z., Guo, N., Evans, N.J., Jeon, H., Li, Q., and Li, W., 2017, Across-arc geochemical variation in the Jurassic magmatic zone, Southern Tibet: Implication for continental arc-related porphyry Cu Au mineralization: Chemical Geology, v. 451, p. 116–134. 10.1016/j.chemgeo.2017.01.010.
  • Whattam, S.A., and Stern, R.J., 2016, Arc magmatic evolution and the construction of continental crust at the Central American volcanic arc system: International Geology Review, v. 58, no. 6, p. 653–686. 10.1080/00206814.2015.1103668.
  • Winter, J.D., 2014, Principles of igneous and metamorphic petrology: Pearson Education, v. 55, p. 720.
  • Wörner, G., Mamani, M., and Blum-Oeste, M., 2018, Magmatism in the Central Andes: Elements, v. 14, no. 4, p. 237–244. 10.2138/gselements.14.4.237.
  • Xie, F., Tang, J., Lang, X., and Ma, D., 2018, The different sources and petrogenesis of Jurassic intrusive rocks in the southern Lhasa subterrane, Tibet: Evidence from the trace element compositions of zircon, apatite, and titanite: Lithos, v. 314–315, p. 447–462. 10.1016/j.lithos.2018.06.024.
  • Zapata, S., Cardona, A., Jaramillo, C., Valencia, V., and Vervoot, J., 2016, U-Pb LA-ICP-MS Geochronology and geochemistry of Jurassic volcanic and plutonic rocks from the Putumayo region (southern Colombia): Tectonics setting and regional correlations: Boletín de Geología, v. 38, no. 2, p. 21–38. 10.18273/revbol.v38n2-2016001.
  • Zapata-García, G., Rodríguez-García, G., and Arango-Mejía, M.I., 2017, Petrografía, geoquímica y geocronología de rocas metamórficas aflorantes en San Francisco Putumayo y la vía Palermo-San Luis asociadas a los complejos La Cocha-Río Téllez y Aleluya: Boletín de Ciencias de la Tierra, no. 41, p. 48–65. 10.15446/rbct.n41.58630.
  • Zhou, L., Wang, R., Hou, Z., Li, C., Zhao, H., Li, X.-W., and Qu, W.-J., 2018, Hot Paleocene-Eocene Gangdese arc: Growth of continental crust in southern Tibet: Gondwana Research, v. 62, p. 178–197. 10.1016/j.gr.2017.12.011.
  • Zhu, D., Wang, Q., Cawood, P.A., Zhao, Z., and Mo, X., 2017, Raising the Gangdese mountains in southern Tibet: Journal of Geophysical Research Solid Earth, v. 122, p. 214–223. 10.1002/2016JB013508.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.