559
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Geochronology, petrogenesis and tectonic significance of two episodes of Neoproterozoic diabasic magmatism in South China: from orogenesis to intracontinental rifting

, , , , , , , , , & show all
Pages 3074-3098 | Received 18 Aug 2021, Accepted 27 Nov 2021, Published online: 02 Jan 2022

References

  • Aldanmaz, E., Pearce, J.A., Thirlwall, M.F., and Mitchell, J.G., 2000, Petrogenetic evolution of late Cenozoic, post–collision volcanism in western Anatolia, Turkey: Journal of Volcanology and Geothermal Research, v. 102, p. 67–95. doi:10.1016/S0377-0273(00)00182-7.
  • Beard, J.S., 1986, characteristic characteristic mineralogy of arc–related cumulate gabbros – Implications for the tectonic setting of gabbroic plutons and for andesite genesis: Geology, v. 14, p. 848–851. doi:10.1130/0091-7613(1986)14<848:CMOACG>2.0.CO;2.
  • BGMRGP (Bureau of Geology Mineral Resources of Guizhou Province), 1987, Regional geology of Guizhou Province: Beijing, Geological Publishing House, 1–698 p.
  • Cawood, P.A., Wang, W., Zhao, T.Y., Xu, Y.J., Mulder, J.A., Pisarevsky, S.A., Zhang, L.M., Gan, C.S., He, H.Y., Qi, L., Wang, Y.J., Zhao, G.C., Zhou, M.F., and Zi, J.W., 2020, Deconstructing South China and consequences for reconstructing Nuna and Rodinia: Earth–Science Reviews, v. 204, p. 103169.
  • Chen, J.F., Foland, K., Xing, F.M., Xu, X., and Zhou, T.X., 1991, Magmatism along the southeast margin of the Yangtze block: Precambrian collision of the Yangtze and Cathysia blocks of China: Geology, v. 19, no. 8, p. 815–818. doi:10.1130/0091-7613(1991)019<0815:MATSMO>2.3.CO;2.
  • Chen, J.F., and Jahn, B.M., 1998, Crustal evolution of southeastern China: Nd and Sr isotopic evidence: Tectonophysics, v. 284, no. 1–2, p. 101–133. doi:10.1016/S0040-1951(97)00186-8.
  • Chen, X., Wang, X.L., Wang, D., and Shu, X.J., 2018, Contrasting mantle–crust melting processes within orogenic belts: Implications from two episodes of mafic magmatism in the western segment of the Neoproterozoic Jiangnan Orogen in South China: Precambrian Research, v. 309, p. 123–137. doi:10.1016/j.precamres.2017.04.001.
  • Chew, D.M., Sylvester, P.J., and Tubrett, M.N., 2011, U–Pb and Th–Pb dating of apatite by LA–ICPMS: Chemical Geology, v. 280, p. 200–216. doi:10.1016/j.chemgeo.2010.11.010.
  • Davies, J.H., and Von Blanckenburg, F., 1995, Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens: Earth and Planetary Science Letters, v. 129, p. 85–102. doi:10.1016/0012-821X(94)00237-S.
  • Dewey, J., 1988, Extensional collapse of orogens: Tectonics, v. 7, p. 1123–1139. doi:10.1029/TC007i006p01123.
  • Dong, Y., Liu, X., Santosh, M., Chen, Q., Zhang, X., and Wei, L., 2012, Neoproterozoic accretionary tectonics along the northwestern margin of the Yangtze block, China: Constraints from zircon U–Pb geochronology and geochemistry: Precambrian Research, v. 196–197, p. 247–274. doi:10.1016/j.precamres.2011.12.007.
  • Dong, Y., Liu, X., Santosh, M., Zhang, X., Chen, Q., Yang, C., and Yang, Z., 2011, Neoproterozoic subduction tectonics of the northwestern Yangtze Block in South China: Constrains from zircon U–Pb geochronology and geochemistry of mafic intrusions in the Hannan Massif: Precambrian Research, v. 189, p. 66–90. doi:10.1016/j.precamres.2011.05.002.
  • Draut, A.E., Clift, P.D., Hannigan, R.E., Layne, G., and Shimizu, N., 2002, A model for continental crust genesis by arc accretion: Rare earth element evidence from the Irish Caledonides: Earth and Planetary Science Letters, v. 203, p. 861–877. doi:10.1016/S0012-821X(02)00931-7.
  • Duggen, S., Hoernle, K., van den Bogaard, P., and Garbe-Schönberg, D. (2005) Post-collisional transition from subduction-to intraplate-type magmatism in the westernmost Mediterranean: evidence for continental-edge delamination of subcontinental lithosphere. Journal of Petrology 46, 1155–1201.
  • Edwards, C.M.H., Menzies, M.A., Thirlwall, M.F., Morries, J.D., Leeman, W.P., and Harmon, R.S., 1994, The transition to potassic alkaline volcanism in Island Arcs: The Ringgit—Beser Complex, East Java, Indonesia: Journal of Petrology, v. 35, p. 1557–1595. doi:10.1093/petrology/35.6.1557.
  • Elliott, T., Plank, T., Zindler, A., White, W., and Bourdon, B., 1997, Element transport from slab to volcanic front at the Mariana arc: Journal of Geophysical Research: Solid Earth, v. 102, p. 14991–15019. doi:10.1029/97JB00788.
  • Foster, G.L., and Carter, A., 2007, Insights into the patterns and locations of erosion in the himalaya – A combined fission–track and in situ sm–nd isotopic study of detrital apatite: Earth and Planetary Science Letters, v. 257, no. 3–4, p. 407–418. doi:10.1016/j.epsl.2007.02.044.
  • Foster, G.L., and Vance, D., 2006, In situ Nd isotopic analysis of geological materials by laser ablation MC–ICP–MS: Journal of Analytical Atomic Spectrometry, v. 21, p. 288–296. doi:10.1039/b513945g.
  • George, R., Turner, S., Hawkesworth, C., Morris, J., and Zheng, S.H., 2003, Melting processes and fluid and sediment transport rates along the Alaska–Aleutian arc from an integrated U–Th–Ra–Be isotope study: Journal of Geophysical Research Atmospheres, v. 108. doi:10.1029/2002JB001916.
  • Greentree, M.R., Li, Z.X., Li, X.H., and Wu, H., 2006, Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western South China and relationship to the assembly of Rodinia: Precambrian Research, v. 151, p. 79–100. doi:10.1016/j.precamres.2006.08.002.
  • Guo, F., Fan, W., Wang, Y., and Zhang, M., 2004, Origin of early Cretaceous calc–alkaline lamprophyres from the Sulu orogen in eastern China: Implications for enrichment processes beneath continental collisional belt: Lithos, v. 78, p. 291–305. doi:10.1016/j.lithos.2004.05.001.
  • Gutiérrez–Alonso, G, Murphy, J.B, Fernández–Suárez, J, Weil, A.B, Franco, M.P, and Gonzalo, J.C 2011 Lithospheric delamination in the core of Pangea: Sm–Nd insights from the Iberian mantle Geology v. 39 p. 155–158.
  • Hawkesworth, C.J., Turner, S.P., McDermott, F., Peate, D.W., and vanCalsteren, P., 1997, U–Th isotopes in arc magmas: Implications for element transfer from the subducted crust: Science, v. 276, p. 551–555. doi:10.1126/science.276.5312.551.
  • Herzberg, C., 2006, Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano: Nature, v. 444, p. 605–609. doi:10.1038/nature05254.
  • Hofmann, A.W., 1997, Mantle geochemistry: The message from oceanic volcanism: Nature, v. 385, p. 219–229. doi:10.1038/385219a0.
  • Huaimin, X., Fang, M., Yongqin, S., and Yaping, X., 2010, Geochronology and geochemisty of the Neoproterozoic granitoid association from eastern segment of the Jiangnan orogen, China Constraints on the timing and process of amalgamation between the Yangtze and Cathaysia blocks: Acta Petrologica Sinica, v. 26, p. 3215–3244.
  • Huang, S.F., Wang, W., Pandit, M.K., Zhao, J.H., and Xue, E.K., 2019, Neoproterozoic s–type granites in the western jiangnan orogenic belt, south China: Implications for petrogenesis and geodynamic significance: Lithos, v. 342–343, p. 45–58. doi:10.1016/j.lithos.2019.05.016.
  • Irvine, T.N., and Baragar, W.R.A., 1971, A guide to the chemical classification of the common volcanic rocks: Canadian Journal of Earth Sciences, v. 8, p. 523–548. doi:10.1139/e71-055.
  • Kelemen, P.B., Hanghj, K., and Greene, A.R., 2007, One view of the geochemistry of subduction–related magmatic arcs, with an emphasis on primitive andesite and lower crust: Treatise on Geochemistry, v. 3, p. 1–70.
  • Kepezhinskas, P., McDermott, F., Defant, M.J., Hochstaedter, A., Drummond, M.S., Hawkesworth, C.J., Koloskov, A., Maury, R.C., and Bellon, H., 1997, Trace element and Sr–Nd–Pb isotopic constraints on a three–component model of Kamchatka Arc petrogenesis: Geochimica et cosmochimica acta, v. 61, p. 577–600. doi:10.1016/S0016-7037(96)00349-3.
  • Kinzler, R.J., 1997, Melting of mantle peridotite at pressures approaching the spinel to garnet transition: Application to mid–ocean ridge basalt petrogenesis: Journal of Geophysical Research Solid Earth, v. 102, no. B1, p. 853–874. doi:10.1029/96JB00988.
  • Kou, C.H., Liu, Y., Huang, H., Li, T., Ding, X., and Zhang, H., 2018, The Neoproterozoic arc–type and OIB–type mafic–ultramafic rocks in the western Jiangnan Orogen: Implications for tectonic settings: Lithos, v. 312, p. 38–56. doi:10.1016/j.lithos.2018.05.004.
  • Kuno, H., 1968, Differentiation of basalt magmas: Basalts, The Poldervaart Treatise on Rocks of Basaltic Composition.
  • La Flèche, M., Camire, G., and Jenner, G., 1998, Geochemistry of post–Acadian, Carboniferous continental intraplate basalts from the Maritimes Basin, Magdalen islands, Quebec, Canada: Chemical Geology, v. 148, p. 115–136. doi:10.1016/S0009-2541(98)00002-3.
  • Le Maitre, R.W., Bateman, P., and Dudek, A., 1989, A classification of igenous rocks and glossary of terms: Oxford, Blackwell, 1–253 p.
  • Li, L.M., Lin, S.F., Xing, G.F., Davis, D.W., Jiang, Y., Davis, W., and Zhang, Y.J., 2016, Ca. 830Ma back–arc type volcanic rocks in the eastern part of the Jiangnan orogen: Implications for the Neoproterozoic tectonic evolution of South China Block: Precambrian Research, v. 275, p. 209–224. doi:10.1016/j.precamres.2016.01.016.
  • Li, Q.Z., 2008, The isotopic characteristics of the early–cretaceous mafic rocks from Dabie orogenic belt and the contribution of the lower crust to the magma source: Acta Petrologica Sinica, v. 24, p. 1771–1781.
  • Li, X.H., Li, W.X., Li, Z.X., and Liu, Y., 2008a, 850–790 Ma bimodal volcanic and intrusive rocks in northern Zhejiang, South China: A major episode of continental rift magmatism during the breakup of Rodinia: Lithos, v. 102, p. 341–357. doi:10.1016/j.lithos.2007.04.007.
  • Li, X.H., Li, W.X., Li, Z.X., Lo, C.H., Wang, J., Ye, M.F., and Yang, Y.H., 2009, Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U–Pb zircon ages, geochemistry and Nd–Hf isotopes of the Shuangxiwu volcanic rocks: Precambrian Research, v. 174, p. 117–128. doi:10.1016/j.precamres.2009.07.004.
  • Li, X.H., Li, Z.X., Ge, W., Zhou, H., Li, W., Liu, Y., and Wingate, M.T., 2003, Neoproterozoic granitoids in South China: Crustal melting above a mantle plume at ca. 825 Ma?: Precambrian Research, v. 122, p. 45–83. doi:10.1016/S0301-9268(02)00207-3.
  • Li, X.H., Li, Z.X., and Li, W.X., 2014, Detrital zircon U–Pb age and Hf isotope constrains on the generation and reworking of Precambrian continental crust in the Cathaysia Block, South China: A synthesis: Gondwana Research, v. 25, p. 1202–1215. doi:10.1016/j.gr.2014.01.003.
  • Li, Y.G., Wang, S.S., Liu, M.W., Meng, E., Wei, X.Y., Zhao, M.B., and Ji, M.Q., 2015, U–Pb dating study of baddeleyite by LA–ICP–MS: Technique and application: Acta Geologica Sinica, v. 89, no. 12, p. 2400–2418. (in Chinese with English abstract).
  • Li, Z.X., Bogdanova, S., Collins, A., Davidson, A., De Waele, B., Ernst, R., Fitzsimons, I., Fuck, R., Gladkochub, D., and Jacobs, J., 2008b, Assembly, configuration, and break–up history of Rodinia: A synthesis: Precambrian Research, v. 160, p. 179–210.
  • Li, Z.X., Li, X.H., Kinny, P.D., and Wang, J., 1999, The breakup of Rodinia: Did it start with a mantle plume beneath South China?: Earth and Planetary Science Letters, v. 173, p. 171–181. doi:10.1016/S0012-821X(99)00240-X.
  • Li, Z.X., Li, X.H., Zhou, H., and Kinny, P.D., 2002, Grenvillian continental collision in south China: New SHRIMP U–Pb zircon results and implications for the configuration of Rodinia: Geology, v. 30, p. 163–166. doi:10.1130/0091-7613(2002)030<0163:GCCISC>2.0.CO;2.
  • Liang, J., Ding, X., Sun, X., Zhang, Z., Zhang, H., and Sun, W., 2009, Nb/Ta fractionation observed in eclogites from the Chinese continental scientific drilling project: Chemical Geology, v. 268, p. 27–40. doi:10.1016/j.chemgeo.2009.07.006.
  • Lin, M., Peng, S., Jiang, X., Polat, A., Kusky, T., Wang, Q., and Deng, H., 2016, Geochemistry, petrogenesis and tectonic setting of Neoproterozoic mafic–ultramafic rocks from the western Jiangnan orogen, South China: Gondwana Research, v. 35, p. 338–356. doi:10.1016/j.gr.2015.05.015.
  • Liu, Y., 1996, Simultaneous and precise determination of 40 trace elements in rock samples using ICP–MS: Geochimica, v. 25, p. 552–558.
  • Liu, Y., Gao, S., Hu, Z., Gao, C., Zong, K., and Wang, D., 2010, Continental and Oceanic crust recycling–induced melt–peridotite interactions in the Trans–North China Orogen: U–Pb Dating, Hf isotopes and trace elements in Zircons from Mantle Xenoliths: Journal of Petrology, v. 51, p. 537–571. doi:10.1093/petrology/egp082.
  • Liu, Y.S., Hu, Z.C., Gao, S., Günther, D., Xu, J., Gao, C.G., and Chen, H.H., 2008, In situ analysis of major and trace elements of anhydrous minerals by LA–ICP–MS without applying an internalstandard: Chemical Geology, v. 257, p. 34–43. doi:10.1016/j.chemgeo.2008.08.004.
  • Liu, Z., Jiang, Y.H., Wang, G.C., Ni, C.Y., Qing, L., and Zhang, Q., 2015, Middle Neoproterozoic (∼845Ma) continental arc magmatism along the northwest side of the Jiangshan–Shaoxing suture, South China: Geochronology, geochemistry, petrogenesis and tectonic implications: Precambrian Research, v. 268, p. 212–226. doi:10.1016/j.precamres.2015.07.013.
  • Ma, L., Jiang, S.Y., Hou, M.L., Dai, B.Z., Jiang, Y.H., Yang, T., Zhao, K.D., Pu, W., Zhu, Z.Y., and Xu, B., 2014, Geochemistry of Early Cretaceous calc–alkaline lamprophyres in the Jiaodong Peninsula: Implication for lithospheric evolution of the eastern North China Craton: Gondwana Research, v. 25, p. 859–872. doi:10.1016/j.gr.2013.05.012.
  • McDonough, W.F., and Sun, S.S., 1995, The composition of the Earth: Chemical Geology, v. 120, p. 223–253. doi:10.1016/0009-2541(94)00140-4.
  • McKenzie, D., and Onions, R.K., 1991, Partial melt distributions from inversion of rare–earth element concentrations: Journal of Petrology, v. 32, p. 1021–1091. doi:10.1093/petrology/32.5.1021.
  • McKenzie, D.P., and O’Nions, R.K., 1995, The source regions of Ocean Island Basalts: Journal of Petrology, v. 36, p. 133–159. doi:10.1093/petrology/36.1.133.
  • Meschede, M., 1986, A method of discriminating between different types of mid–ocean ridge basalts and continental tholeiites with the Nb–Zr–Y diagram: Chemical Geology, v. 56, p. 207–218. doi:10.1016/0009-2541(86)90004-5.
  • Norrish, K., and Chappell, B., 1977, X–ray fluorescence spectrometry, in Zussman, J., ed., Physical methods in determinative mineralogy, 2nd edition: New York, Academic Press. 1-720.
  • Pandey, A., Rao, N.C., Pandit, D., Pankaj, P., Pandey, R., Sahoo, S., and Kumar, A., 2017, Subduction–Tectonics in the evolution of the eastern Dharwar craton, southern India: Insights from the post–collisional calc–alkaline lamprophyres at the western margin of the Cuddapah basin: Precambrian Research, v. 298, p. 235–251. doi:10.1016/j.precamres.2017.06.004.
  • Pearce, J.A., 1975, Basalt geochemistry used to investigate past tectonic environments on Cyprus: Tectonophysics, v. 25, p. 41–67. doi:10.1016/0040-1951(75)90010-4.
  • Pearce, J.A., and Cann, J.R., 1973, Tectonic setting of basic volcanic rocks determined using trace element analyses: Earth and Planetary Science Letters, v. 19, p. 290–300. doi:10.1016/0012-821X(73)90129-5.
  • Pearce, J.A., and Norry, M.J., 1979, Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks: Contributions to Mineralogy & Petrology, v. 69, p. 33–47. doi:10.1007/BF00375192.
  • Pearce, J.A., and Peate, D.W., 1995, Tectonic implications of the composition of volcanic arc magmas: Annual Review of Earth and Planetary Sciences, v. 23, p. 251–285. doi:10.1146/annurev.ea.23.050195.001343.
  • Ramos, F.C., Wolff, J.A., and Tollstrup, D.L., 2004, Measuring 87Sr/86Sr variations in minerals and groundmass from basalts using LA–MC–ICPMS: Chemical Geology, v. 211, p. 135–158. doi:10.1016/j.chemgeo.2004.06.025.
  • Ross, P.S., and Bedard, J.H., 2009, Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace–element discriminant diagrams: Canadian Journal of Earth Sciences, v. 46, p. 823–839. doi:10.1139/E09-054.
  • Safonova, I.Y., and Santosh, M., 2014, Accretionary complexes in the Asia–Pacific region: Tracing archives of Ocean Plate Stratigraphy and tracking mantle plumes (vol 25, pg 126, 2014): Gondwana Research, v. 26, p. 802. doi:10.1016/j.gr.2014.03.004.
  • Shaw, D.M., 1970, Trace element fractionation during anatexis: Geochimica Et Cosmochimica Acta, v. 34, no. 2, p. 237–243. doi:10.1016/0016-7037(70)90009-8.
  • Shen, W.Z., Zhu, J.C., Liu, C.S., Xu, S.J., and Ling, H.F., 1993, Sm–Nd isotopic study of basement metamorphic rocks in South China and its constraint on material sources of granitoids: Acta Petrologica Sinica, v. 9, no. 2, p. 115–124. (in Chinese with English abstract).
  • Shu, L.S., Faure, M., Yu, J.H., and Jahn, B.M., 2011, Geochronological and geochemical features of the Cathaysia block (South China): New evidence for the Neoproterozoic breakup of Rodinia: Precambrian Research, v. 187, p. 263–276. doi:10.1016/j.precamres.2011.03.003.
  • Straub, S.M., Gomez–Tuena, A., Stuart, F.M., Zellmer, G.F., Espinasa–Perena, R., Yue, C. et al., 2011, Formation of hybrid arc andesites beneath thick continental crust: Earth and Planetary Science Letters, v. 303, no. 3–4, p. 337–347. doi:10.1016/j.epsl.2011.01.013.
  • Sun, S.S., and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes: Geological Society, London, Special Publications, v. 42, p. 313–345.
  • Sun, Z.M., Wang, X.L., Qi, L., Zhang, F.F., Wang, D., Li, J.Y., Yu, M.G., and Shu, X.J., 2018, Formation of the Neoproterozoic ophiolites in southern China: New constraints from trace element and PGE geochemistry and Os isotopes: Precambrian Research, v. 309, p. 88–101. doi:10.1016/j.precamres.2017.12.042.
  • Susanne, M., and Straub, 2008, Evidence from high–ni olivines for a hybridized peridotite/pyroxenite source for orogenic andesites from the central Mexican volcanic belt: Geochemistry, Geophysics, Geosystems, v. 9, no. 3. Q03007.
  • Tang, J.F., Hou, M.J., Li, H.K., Wu, Y.D., and Sun, C.Y., 2003, Multistage superimposed deformation and its evolution of the Northeastern margin of Yangtze Block: Geotectonica Et Metallogenia, v. 27, p. 313–326.
  • Thirlwall, M., Smith, T., Graham, A., Theodorou, N., Hollings, P., Davidson, J., and Arculus, R., 1994, High field strength element anomalies in arc lavas: Source or process?: Journal of Petrology, v. 35, p. 819–838. doi:10.1093/petrology/35.3.819.
  • Walter, M.J., 1998, Melting of garnet peridotite and the origin of komatiite and depleted lithosphere: Journal of Petrology, v. 39, no. 1, p. 29–60. doi:10.1093/petroj/39.1.29.
  • Wan, L., Zeng, Z., Asimow, P.D., Zeng, Z., Peng, L., Xu, D., Wei, Y., Liu, W., Lu, C., and Chang, W., 2019, Mid–Neoproterozoic mafic rocks in the western Jiangnan orogen, South China: Intracontinental rifting or subduction?: Journal of Asian Earth Sciences, v. 185, p. 104039. doi:10.1016/j.jseaes.2019.104039.
  • Wan, Y., Liu, D., Xu, M., Zhuang, J., Song, B., Shi, Y., and Du, L., 2007, SHRIMP U–Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in Northwestern Fujian, Cathaysia block, China: Tectonic implications and the need to redefine lithostratigraphic units: Gondwana Research, v. 12, p. 166–183. doi:10.1016/j.gr.2006.10.016.
  • Wang, W., Liu, S., Santosh, M., Wang, G., Bai, X., and Guo, R., 2015, Neoarchean intra–oceanic arc system in the Western Liaoning Province: Implications for early precambrian crustal evolution in the Eastern Block of the North China Craton: Earth–Science Reviews, v. 150, p. 329–364. doi:10.1016/j.earscirev.2015.08.002.
  • Wang, W., Zhao, J.H., Zhou, M.F., Yang, S.H., and Chen, F.K., 2014, Neoproterozoic Mafic–Ultramafic intrusions from the Fanjingshan Region, South China: Implications for subduction–related magmatism in the Jiangnan Fold Belt: Journal of Geology, v. 122, p. 455–473. doi:10.1086/676596.
  • Wang, W., and Zhou, M.F., 2012, Sedimentary records of the Yangtze Block (South China) and their correlation with equivalent Neoproterozoic sequences on adjacent continents: Sedimentary Geology, v. 265, p. 126–142. doi:10.1016/j.sedgeo.2012.04.003.
  • Wang, W., Zhou, M.F., Yan, D.P., and Li, J.W., 2012a, Depositional age, provenance, and tectonic setting of the Neoproterozoic Sibao Group, southeastern Yangtze Block, South China: Precambrian Research, v. 192, p. 107–124. doi:10.1016/j.precamres.2011.10.010.
  • Wang, W., Zhou, M.F., Yan, D.P., Li, L., and Malpas, J., 2013a, Detrital zircon record of Neoproterozoic active-margin sedimentation in the eastern Jiangnan Orogen, South China: Precambrian Research, v. 235, p. 1–19. doi:10.1016/j.precamres.2013.05.013.
  • Wang, W., Zhou, M.F., Zhao, J.H., Pandit, M.K., Zheng, J.P., and Liu, Z.R., 2016, Neoproterozoic active continental margin in the southeastern Yangtze block of south China: Evidence from the ca. 830–810ma sedimentary strata: Sedimentary Geology, v. 342, no. aug.1, p. 254–267. doi:10.1016/j.sedgeo.2016.07.006.
  • Wang, X.C., Li, X.H., Li, Z.X., Li, Q.L., Tang, G.Q., Gao, Y.Y., Zhang, Q.R., and Liu, Y., 2012b, Episodic Precambrian crust growth: Evidence from U–Pb ages and Hf–O isotopes of zircon in the Nanhua Basin, central South China: Precambrian Research, v. 222, p. 386–403. doi:10.1016/j.precamres.2011.06.001.
  • Wang, X.L., Jiang, S.Y., Dai, B.Z., Griffin, W.L., Dai, M.N., and Yang, Y.H., 2011, Age, geochemistry and tectonic setting of the Neoproterozoic (ca 830 Ma) gabbros on the southern margin of the North China Craton: Precambrian Research, v. 190, p. 35–47. doi:10.1016/j.precamres.2011.08.004.
  • Wang, X.L., Zhao, G., Zhou, J.C., Liu, Y., and Hu, J., 2008, Geochronology and Hf isotopes of zircon from volcanic rocks of the Shuangqiaoshan Group, South China: Implications for the Neoproterozoic tectonic evolution of the eastern Jiangnan orogen: Gondwana Research, v. 14, p. 355–367. doi:10.1016/j.gr.2008.03.001.
  • Wang, X.L., Zhou, J.C., Qiu, J.S., and Gao, J.F., 2004, Geochemistry of the Meso– To Neoproterozoic basic–acid rocks from Hunan Province, South China: Implications for the evolution of the western Jiangnan orogen: Precambrian Research, v. 135, p. 79–103. doi:10.1016/j.precamres.2004.07.006.
  • Wang, X.L., Zhou, J.C., Qiu, J.S., Zhang, W.L., Liu, X.M., and Zhang, G.L., 2006, LA–ICP–MS U–Pb zircon geochronology of the Neoproterozoic igneous rocks from Northern Guangxi, South China: Implications for tectonic evolution: Precambrian Research, v. 145, p. 111–130. doi:10.1016/j.precamres.2005.11.014.
  • Wang, Y., Zhang, A., Cawood, P.A., Fan, W., Xu, J., Zhang, G., and Zhang, Y., 2013b, Geochronological, geochemical and Nd–Hf–Os isotopic fingerprinting of an early Neoproterozoic arc–back–arc system in South China and its accretionary assembly along the margin of Rodinia: Precambrian Research, v. 231, p. 343–371. doi:10.1016/j.precamres.2013.03.020.
  • Winchester, J.A., and Floyd, P.A., 1976, Geochemical magma type discrimination – Application to altered and metamorphosed basic igneous rocks: Earth and Planetary Science Letters, v. 28, p. 459–469. doi:10.1016/0012-821X(76)90207-7.
  • Wingate, M.T.D., and Compston, W., 2000, Crystal orientation effects during ion microprobe U–Pb analysis of baddeleyite: Chemical Geology, v. 168, p. 75–97. doi:10.1016/S0009-2541(00)00184-4.
  • Woodhead, J., Swearer, S., Hergt, J., and Maas, R., 2004, In situ Sr–isotope analysis of carbonates by LA–MC–ICP–MS: Interference corrections, high spatial resolution and an example from otolith studies: Journal of Analytical Atomic Spectrometry, v. 20, p. 22–27. doi:10.1039/b412730g.
  • Xia, Y., Xu, X., Niu, Y., and Liu, L., 2018, Neoproterozoic amalgamation between Yangtze and Cathaysia blocks: The magmatism in various tectonic settings and continent–arc–continent collision: Precambrian Research, v. 309, p. 56–87.
  • Xiao, L., Zhang, H.F., Ni, P.Z., Xiang, H., and Liu, X.M., 2007, LA–ICP–MS U–Pb zircon geochronology of early Neoproterozoic mafic–intermediat intrusions from NW margin of the Yangtze Block, South China: Implication for tectonic evolution: Precambrian Research, v. 154, p. 221–235. doi:10.1016/j.precamres.2006.12.013.
  • Yang, J.H., Chung, S.L., Zhai, M.G., and Zhou, X.H., 2004, Geochemical and Sr–Nd–Pb isotopic compositions of mafic dikes from the Jiaodong Peninsula, China: Evidence for vein–plus–peridotite melting in the lithospheric mantle: Lithos, v. 73, p. 145–160. doi:10.1016/j.lithos.2003.12.003.
  • Yao, J.L., Cawood, P.A., Shu, L.S., Santosh, M., and Li, J.Y., 2016, An early neoproterozoic accretionary prism ophiolitic mélange from the western jiangnan orogenic belt, south China: Journal of Geology, v. 124, no. 5, p. 587–601. doi:10.1086/687396.
  • Yao, J.L., Cawood, P.A., Shu, L.S., and Zhao, G.C., 2019, Jiangnan Orogen, South China: A ~970–820 Ma Rodinia margin accretionary belt: Earth–Science Reviews, v. 196, p. 10287. doi:10.1016/j.earscirev.2019.05.016.
  • Yao, J.L., Shu, L.S., Santosh, M., and Zhao, G.C., 2014, Neoproterozoic arc–related mafic–ultramafic rocks and syn–collision granite from the western segment of the Jiangnan Orogen, South China: Constraints on the Neoproterozoic assembly of the Yangtze and Cathaysia Blocks: Precambrian Research, v. 243, p. 39–62. doi:10.1016/j.precamres.2013.12.027.
  • Yao, J., Shu, L., Santosh, M., and Li, J., 2013, Geochronology and Hf isotope of detrital zircons from Precambrian sequences in the eastern Jiangnan Orogen: Constraining the assembly of Yangtze and Cathaysia Blocks in South China: Journal of Asian Earth Sciences, v. 74, p. 225–243. doi:10.1016/j.jseaes.2012.08.010.
  • Ye, M.F., Li, X.H., Li, W.X., Liu, Y., and Li, Z.X., 2007, SHRIMP zircon U–Pb geochronological and whole–rock geochemical evidence for an early Neoproterozoic Sibaoan magmatic arc along the southeastern margin of the Yangtze Block: Gondwana Research, v. 12, p. 144–156. doi:10.1016/j.gr.2006.09.001.
  • Zhang, J.J., Zheng, Y.F., and Zhao, Z.F., 2009, Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east–central China: Lithos, v. 110, p. 305–326. doi:10.1016/j.lithos.2009.01.006.
  • Zhang, Y., Wang, Y., Fan, W., Zhang, A., and Ma, L., 2012, Geochronological and geochemical constraints on the metasomatised source for the Neoproterozoic (similar to 825 Ma) high–mg volcanic rocks from the Cangshuipu area (Hunan Province) along the Jiangnan domain and their tectonic implications: Precambrian Research, v. 220, p. 139–157. doi:10.1016/j.precamres.2012.07.003.
  • Zhang, Y. , Wang, Y. , Geng, H. , Zhang, Y. , Fan, W. , & Zhong, H. . (2013) Early neoproterozoic (similar to 850 ma) back-arc basin in the central jiangnan orogen (eastern south china): geochronological and petrogenetic constraints from meta-basalts. Precambrian Research, 231, 325–342.
  • Zhang, Y.Z., and Wang, Y.J., 2016, Early neoproterozoic (∼840 ma) arc magmatism: Geochronological and geochemical constraints on the metabasites in the central jiangnan orogen: Precambrian Research, v. 275, p. 1–17. doi:10.1016/j.precamres.2015.11.006.
  • Zhao, G.C., 2015, Jiangnan Orogen in South China: Developing from divergent double subduction: Gondwana Research, v. 27, no. 3, p. 1173–1180. doi:10.1016/j.gr.2014.09.004.
  • Zhao, G.C., and Cawood, P.A., 1999, Tectonothermal evolution of the Mayuan assemblage in the Cathaysia Block: Implications for Neoproterozoic collision–related assembly of the South China Craton: American Journal of Science, v. 299, p. 309–339. doi:10.2475/ajs.299.4.309.
  • Zhao, G., and Cawood, P.A., 2012, Precambrian geology of China: Precambrian Research, v. 222–223, p. 13–54.
  • Zhao, G., and Guo, J., 2012, Precambrian geology of China: Preface: Precambrian Research, v. 222, p. 1–12. doi:10.1016/j.precamres.2012.09.018.
  • Zhao, J.H., and Zhou, M.F., 2007, Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): Implications for subduction–related metasomatism in the upper mantle: Precambrian Research, v. 152, p. 27–47. doi:10.1016/j.precamres.2006.09.002.
  • Zhao, J.H., and Zhou, M.F., 2013, Neoproterozoic high–mg basalts formed by melting of ambient mantle in south China: Precambrian Research, v. 233, p. 193–205. doi:10.1016/j.precamres.2013.04.017.
  • Zhao, J.H., Zhou, M.F., Yan, D.P., Zheng, J.P., and Li, J.W., 2011, Reappraisal of the ages of Neoproterozoic strata in South China: No connection with the Grenvillian orogeny: Geology, v. 39, p. 299–302. doi:10.1130/G31701.1.
  • Zhao, J.H., Zhou, M.F., and Zheng, J.P., 2010, Metasomatic mantle source and crustal contamination for the formation of the Neoproterozoic mafic dike swarm in the northern Yangtze Block, South China: Lithos, v. 115, p. 177–189. doi:10.1016/j.lithos.2009.12.001.
  • Zheng, Y.F., 2004, Position of South China in configuration of Neoproterozoic supercontinent: Chinese Science Bulletin, v. 49, p. 751–753.
  • Zheng, Y.F., Wu, R.X., Wu, Y.B., Zhang, S.B., Yuan, H., and Wu, F.Y., 2008, Rift melting of juvenile arc–derived crust: Geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China: Precambrian Research, v. 163, p. 351–383. doi:10.1016/j.precamres.2008.01.004.
  • Zheng, Y.F., Zhang, S.B., Zhao, Z.F., Wu, Y.B., Li, X., Li, Z., and Wu, F.Y., 2007, Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: Implications for growth and reworking of continental crust: Lithos, v. 96, p. 127–150. doi:10.1016/j.lithos.2006.10.003.
  • Zhong, J., Fan, H., Gu, D., Wang, S., Chen, J., Shi, C., and Li, H., 2016, Major and trace element migration and metallogenic processes of the Xinshuijing UTh deposit in the Longshoushan metallogenic belt, Gansu Province: Geology of China, v. 43, p. 1393–1408.
  • Zhou, J.B., Li, X.H., Ge, W., and Li, Z.X., 2007, Age and origin of middle neoproterozoic mafic magmatism in southern Yangtze block and relevance to the break–up of rodinia: Gondwana Research, v. 12, no. 1, p. 184–197. doi:10.1016/j.gr.2006.10.011.
  • Zhou, J.C., Wang, X.L., and Qiu, J.S., 2009, Geochronology of Neoproterozoic mafic rocks and sandstones from northeastern Guizhou, South China: Coeval arc magmatism and sedimentation: Precambrian Research, v. 170, p. 27–42. doi:10.1016/j.precamres.2008.11.002.
  • Zhou, M.F., Ma, Y.X., Yan, D.P., Xia, X.P., Zhao, J.H., and Sun, M., 2006, The Yanbian terrane (Southern Sichuan Province, SW China): A neoproterozoic are assemblage in the western margin of the Yangtze block: Precambrian Research, v. 144, p. 19–38. doi:10.1016/j.precamres.2005.11.002.
  • Zhou, M.F., Yan, D.P., Kennedy, A.K., Li, Y.Q., and Ding, J., 2002, SHRIMP U–Pb zircon geochronological and geochemical evidence for Neoproterozoic arc–magmatism along the western margin of the Yangtze Block, South China: Earth and Planetary Science Letters, v. 196, p. 51–67. doi:10.1016/S0012-821X(01)00595-7.
  • Zhu, R.Z., Ni, P., Wang, G.G., Ding, J.Y., Fan, M.S., and Ma, Y.G., 2018, Geochronology, geochemistry and petrogenesis of the laozhaishan dolerite sills in the southeastern margin of the north China craton and their geological implication: Gondwana Research, v. 67, p. 131–146. doi:10.1016/j.gr.2018.10.016.
  • Zindler, A., and Hart, S., 1986, Chemical geodynamics: Annual Review of Earth and Planetary Sciences, v. 14, p. 493–571. doi:10.1146/annurev.ea.14.050186.002425.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.