469
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Multi-thermobarometry and microstructures reveal ultra-high temperature metamorphism in the Grenvillian Oaxacan Complex, Southern Mexico

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1331-1353 | Received 18 Feb 2022, Accepted 28 May 2022, Published online: 06 Jun 2022

References

  • Adame-Martínez, M.G., Solari, L.A., Ortega-Obregón, C., and Abdullin, F., 2020, U-Pb geochronology of rutile: Deciphering the cooling history of the Oaxacan Complex granulites, southern Mexico: Revista Mexicana de Ciencias geológicas, v. 37, no. 2, p. 135–145. doi:10.22201/CGEO.20072902E.2020.2.1557
  • Alaniz-Álvarez, S., Nieto-Samaniego, Á., and Ortega-Gutiérrez, F., 1994, Structural evolution of the Sierra de Juárez mylonitic complex, State of Oaxaca, Mexico: The Revista Mexicana de Ciencias Geológicas, v. 11, p. 147–156.
  • Altenberger, U., Mejia-Jimenez, D.M., Günter, C., Sierra-Rodriguez, G.I., Scheffler, F., and Oberhänsli, R., 2012, The Garzón Massif, Colombia-a new ultrahigh-temperature metamorphic complex in the Early Neoproterozoic of Northern South America: mineralogy and Petrology, v. 105, no. 3–4, p. 171–185. doi:10.1007/s00710-012-0202-1
  • Ashley, K.T., Carlson, W.D., Law, R.D., and Tracy, R.J., 2014, Ti resetting in quartz during dynamic recrystallization: Mechanisms and significance: American Mineralogist, v. 99, no. 10, p. 2025–2030. doi:10.2138/am-2014-4943
  • Benisek, A., Dachs, E., and Kroll, H., 2010, A ternary feldspar-mixing model based on calorimetric data: Development and application: Contributions to mineralogy and Petrology, v. 160, no. 3, p. 327–337. doi:10.1007/s00410-009-0480-8
  • Bhattacharaya, A., Mohanty, I., Maji, A., Sen, S.K., and Raith, M., 1991, Non-ideal mixing in the phlogopite-annite binary: Constraints from experimental data on Mg-Fe partitioning and reformulation of the biotite-garnet geothermometer: contributions to Mineralogy and Petrology, v. 111, no. 1, p. 87–93. doi:10.1007/BF00296580
  • Blereau, E., Johnson, T.E., Clark, C., Taylor, R.J.M., Kinny, P.D., and Hand, M., 2017, Reappraising the P–T evolution of the Rogaland–Vest Agder Sector, southwestern Norway: Geoscience Frontiers, v.8, no. 1, p. 1–14. doi:10.1016/j.gsf.2016.07.003
  • Brown, W.L., and Parsons, I., 1981, Towards a more practical two-feldspar geothermometer: contributions to Mineralogy and Petrology, v.76, no. 4, p. 369–377. doi:10.1007/BF00371478
  • Cameron, K.L., Lopez, R., Ortega-Gutiérrez, F., Solari, L.A., Keppie, J.D., and Schulze, C., 2004, U-Pb geochronology and Pb isotopic compositions of leached feldspars: Constraints on the origin and evolution of Grenville rocks from eastern and southern Mexico: Memoir of the Geological Society of America, v. 197, p.755–769. doi:10.1130/0-8137-1197-5.755
  • Carvalho, B.B., Bartoli, O., Ferri, F., Cesare, B., Ferrero, S., Remusat, L., Capizzi, L.S., and Poli, S., 2018, Anatexis and fluid regime of the deep continental crust: New clues from melt and fluid inclusions in metapelitic migmatites from Ivrea Zone (NW Italy): journal of Metamorphic Geology, v. 37, no. 7, p. 951–975. doi:10.1111/jmg.12463
  • Cawood, P.A., and Pisarevsky, S.A., 2017, Laurentia-Baltica-Amazonia relations during Rodinia assembly: Precambrian research, v. 292, p.386–397. doi:10.1016/j.precamres.2017.01.031
  • Cesare, B., Ferrero, S., Salvioli-Mariani, E., Pedron, D., and Cavallo, A., 2009, “Nanogranite” and glassy inclusions: The anatectic melt in migmatites and granulites: Geology, v. 37, no. 7, p. 627–630. doi:10.1130/G25759A.1
  • Cherniak, D.J., Watson, E.B., and Wark, D.A., 2007, Ti diffusion in quartz: chemical Geology, v. 236, no. 1–2, p. 65–74. doi:10.1016/j.chemgeo.2006.09.001
  • Clark, C., Fitzsimons, I.C.W., Healy, D., and Harley, S.L., 2011, How does the continental crust get really hot?: Elements, v. 7, no. 4, p. 235–240. doi:10.2113/gselements.7.4.235
  • Connolly, J.A.D., 2005, Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation: Earth and Planetary Science Letters, v. 236, no. 1–2, p. 524–541. doi:10.1016/j.epsl.2005.04.033
  • Culi, L., Solé, J., Campeny, N., and Oalmann, J.A.G., 2021, High-temperature metamorphic garnets from Grenvillian granulites of southwestern Oaxacan Complex (Southern Mexico): Petrology, geochemistry, geothermobarometry, and tectonic implications: Minerals, v. 11, no. 8, p. 805. doi:10.3390/min11080805
  • Culí, L., Solé, J., and Ortega-Gutiérrez, F., 2020. Metamorphic evolution of Proterozoic ultramafic rocks from the Oaxacan Complex (Oaxaca State, southern Mexico): Tectonic implications, in: Southern and Central Mexico: Basement Framework, Tectonic Evolution, and Provenance of Mesozoic–Cenozoic Basins. Geol. Soc. America Special Paper 546. doi:10.1130/2020.2546(04)
  • Donovan, J.J., Lowers, H.A., and Rusk, B.G., 2011, Improved electron probe microanalysis of trace elements in quartz: American Mineralogist, v. 96, no. 2–3, p. 274–282. doi:10.2138/am.2011.3631
  • Dostal, J., Keppie, J.D., Macdonald, H., and Ortega-Gutiérrez, F., 2004, Sedimentary origin of calcareous intrusions in the ~1 Ga Oaxacan Complex, southern Mexico: Tectonic implications: international Geology Review, v. 46, no. 6, p. 528–541. doi:10.2747/0020-6814.46.6.528
  • Drüppel, K., Elsäßer, L., Brandt, S., and Gerdes, A., 2013, Sveconorwegian mid-crustal ultrahigh-temperature metamorphism in Rogaland, Norway: U-Pb LA-ICP-MS geochronology and pseudosections of sapphirine granulites and associated paragneisses: journal of Petrology, v. 54, no. 2, p. 305–350. doi:10.1093/petrology/egs070
  • Elías-Herrera, M., and Ortega-Gutiérrez, F., 2002, Caltepec fault zone: An Early Permian dextral transpressional boundary between the Proterozoic Oaxacan and Paleozoic Acatlán complexes, southern Mexico, and regional tectonic implications: Tectonics, v. 21, no. 3, p. 4–18. doi:10.1029/2000tc001278
  • Ellis, D.J., 1987, Origin and evolution of granulites in normal and thickened crusts: Geology, v. 15, no. 2, p. 167–170. doi:10.1130/0091-7613(1987)15<167:OAEOGI>2.0.CO;2
  • Fries, C.J., Schlaepfer, C.J., and Rincón-Orta, C., 1966, Nuevos datos geocronológicos del Complejo Oaxaqueño: Boletín de la Sociedad Geológica Mexicana, v. 29, no. 1, p. 59–66. doi:10.18268/BSGM1966v29n1a5
  • Frost, B.R., and Chacko, T., 1989, The Granulite uncertainty principle: Limitations on thermobarometry in granulites: the Journal of Geology, v.97, no. 4, p. 435–450. doi:10.1086/629321
  • Fuhrman, M.L., and Lindsley, D.H., 1988, Ternary-feldspar modeling and thermometry: American Mineralogist, v. 73, p. 201–215.
  • Fyfe, W.S., 1973, The Granulite Facies, Partial Melting and the Archaean Crust Author: Philosophical Transactions of the Royal Society of London, v. 273, p. 457–461.
  • Giles, H.L., Hurley, P.W., and Webster, H.W.M., 1995, Simple approach to the analysis of oxides, silicates and carbonates using X-ray fluorescence spectrometry: X-Ray Spectrometry, v.24, no. 4, p. 205–218. doi:10.1002/xrs.1300240411
  • Gou, L., Zhang, C., Zhang, L., and Wang, Q., 2014, Precipitation of rutile needles in garnet from sillimanite-bearing pelitic granulite from the Khondalite Belt, North China Craton: Chinese science Bulletin, v. 59, no. 32, p. 4359–4366. doi:10.1007/s11434-014-0598-6
  • Guo, J.H., Peng, P., Chen, Y., Jiao, S.J., and Windley, B.F., 2012, UHT sapphirine granulite metamorphism at 1.93-1.92Ga caused by gabbronorite intrusions: Implications for tectonic evolution of the northern margin of the North China Craton: Precambrian research, v. 222-223, p.124–142. doi:10.1016/j.precamres.2011.07.020
  • Harley, S.L., 1985, Garnet-orthopyroxene bearing granulites from Enderby land, Antarctica: Metamorphic pressure temperature-time evolution of the Archaean Napier Complex: journal of Petrology, v. 26, no. 4, p. 819–856. doi:10.1093/petrology/26.4.819
  • Harley, S.L., 1989, The origins of granulites: A metamorphic perspective: Geological Magazine, v. 126, no. 3, p. 215–247. doi:10.1017/S0016756800022330
  • Harley, S.L., 1998, On the occurrence and characterization of ultrahigh-temperature crustal metamorphism: geological Society, London, Special Publications, v. 138, no. 1, p. 81–107. doi:10.1144/GSL.SP.1996.138.01.06
  • Haselton, H.T., Hovis, G.L., Hemingway, B.S., and Robie, R.A., 1983, Calorimetric investigation of the excess entropy of mixing in analbite-sanidine solid solutions: Lack of evidence for Na,K short- range order and implications for two-feldspar thermometry: American Mineralogist, v. 68, p. 398–413.
  • Henry, D.J., Guidotti, C.V., and Thomson, J.A., 2005, The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms: American Mineralogist, v. 90, no. 2–3, p. 316–328. doi:10.2138/am.2005.1498
  • Hokada, T., 2001, Feldspar thermometry in ultrahigh-temperature metamorphic rocks: Evidence of crustal metamorphism attaining ~1100 °C in the Archean Napier Complex, East Antarctica: American Mineralogist, v. 86, no. 7–8, p. 932–938. doi:10.2138/am-2001-0718
  • Holland, T., and Powell, R., 1996, Thermodynamics of order-disorder in minerals: II. Symmetric formalism applied to solid solutions: American Mineralogist, v. 81, no. 11–12, p. 1425–1437. doi:10.2138/am-1996-11-1215
  • Holland, T.J.B., and Powell, R., 1998, An internally consistent thermodynamic data set for phases of petrological interest: Journal of Metamorphic Geology, v. 16, p. 309–343. doi:10.1111/j.1525-1314.1998.00140.x
  • Holland, T.J.B., and Powell, R., 2011, An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids: Journal of Metamorphic Geology, v. 29, p. 333–383. doi:10.1111/j.1525-1314.2010.00923.x
  • Holness, M.B., Cesare, B., and Sawyer, E.W., 2011, Melted rocks under the microscope: Microstructures and their interpretation: Elements, v. 7, no. 4, p. 247–252. doi:10.2113/gselements.7.4.247
  • Ibañez-Mejia, M., Ruiz, J., Valencia, V.A., Cardona, A., Gehrels, G.E., and Mora, A.R., 2011, The Putumayo Orogen of Amazonia and its implications for Rodinia reconstructions: New U-Pb geochronological insights into the Proterozoic tectonic evolution of northWestern South America: Precambrian research, v. 191, no. 1–2, p. 58–77. doi:10.1016/j.precamres.2011.09.005
  • Ibañez-Mejia, M., Pullen, A., Arenstein, J., Gehrels, G.E., Valley, J., Ducea, M.N., Mora, A.R., Pecha, M., and Ruiz, J., 2015, Unraveling crustal growth and reworking processes in complex zircons from orogenic lower-crust: The Proterozoic Putumayo Orogen of Amazonia: Precambrian research, v. 267, p. 285–310. doi:10.1016/j.precamres.2015.06.014
  • Ibañez-Mejia, M., 2020, The Putumayo Orogen of Amazonia: A Synthesis, in Gómez, J., and Mateus-Zabala, D., eds., The Geology of Colombia, Volume 1 Proterozoic – Paleozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales, p. 101–131. doi:10.32685/pub.esp.35.2019.06
  • Jiao, S., and Guo, J., 2011, Application of the two-feldspar geothermometer to ultrahigh-temperature (UHT) rocks in the Khondalite belt, North China craton and its implications: American Mineralogist, v. 96, no. 2–3, p. 250–260. doi:10.2138/am.2011.3500
  • Jiao, S., Guo, J., Mao, Q., and Zhao, R., 2011, Application of Zr-in-rutile thermometry: A case study from ultrahigh-temperature granulites of the Khondalite belt, North China Craton: Contributions to Mineralogy and Petrology, v. 162, no. 2, p. 379–393. doi:10.1007/s00410-010-0602-3
  • Kelsey, D.E., 2008, On ultrahigh-temperature crustal metamorphism: Gondwana Res, v. 13, p. 1–29. doi:10.1016/j.gr.2007.06.001
  • Keppie, J.D., Dostal, J., Ortega-Gutiérrez, F., and Lopez, R., 2001, A Grenvillian arc on the margin of Amazonia: Evidence from the southern Oaxacan Complex, southern Mexico: Precambrian research, v. 112, no. 3–4, p. 165–181. doi:10.1016/S0301-9268(00)00150-9
  • Keppie, J.D., Dostal, J., Cameron, K.L., Solari, L.A., Ortega-Gutiérrez, F., and Lopez, R., 2003, Geochronology and geochemistry of Grenvillian igneous suites in the northern Oaxacan Complex, southern Mexico: Tectonic implications: Precambrian research, v. 120, no. 3–4, p. 365–389. doi:10.1016/S0301-9268(02)00166-3
  • Keppie, J.D., Solari, L.A., Ortega-Gutiérrez, F., Ortega-Rivera, A., Lee, J.K., Lopez, R., and Hames, W.E., 2004, U-Pb and 40Ar/39Ar constraints on the cooling history of the northern Oaxacan Complex: southern Mexico, Tectonic implications.
  • Keppie, J.D., and Ortega-Gutiérrez, F., 2010, 1.3-0.9 Ga Oaxaquia (Mexico): Remnant of an arc/backarc on the northern margin of Amazonia: Journal of South American Earth sciences, v. 29, no. 1, p. 21–27. doi:10.1016/j.jsames.2009.07.001
  • Kohn, M.J., 2020, A refined zirconium-in-rutile thermometer: American Mineralogist, v. 105, no. 6, p. 963–971. doi:10.2138/am-2020-7091
  • Kriegsman, L.M., and Álvarez-Valero, A.M., 2010, Melt-producing versus melt-consuming reactions in pelitic xenoliths and migmatites: Lithos, v. 116, no. 3–4, p. 310–320. doi:10.1016/j.lithos.2009.09.001
  • Kroll, H., Evangelakakis, C., and Voll, G., 1993, Two-feldspar geothermometry: A review and revision for slowly cooled rocks: contributions to Mineralogy and Petrology, v. 114, no. 4, p. 510–518. doi:10.1007/BF00321755
  • Laurent, A.T., Bingen, B., Duchene, S., Whitehouse, M.J., Seydoux-Guillaume, A.-M., and Bosse, V., 2018a, Decoding a protracted zircon geochronological record in ultrahigh temperature granulite, and persistence of partial melting in the crust, Rogaland, Norway: contributions to Mineralogy and Petrology, v.173, no. 4, p. 29. doi:10.1007/s00410-018-1455-4
  • Laurent, A.T., Duchene, S., Bingen, B., Bosse, V., and Seydoux-Guillaume, A.M., 2018b, Two successive phases of ultrahigh temperature metamorphism in Rogaland, S. Norway: Evidence from Y-in-monazite thermometry: journal of Metamorphic Geology, v. 36, no. 8, p. 1009–1037. doi:10.1111/jmg.12425
  • Lawlor, P.J., Ortega-Gutiérrez, F., Cameron, K.L., Ochoa-Camarillo, H., Lopez, R., and Sampson, D.E., 1999, U–Pb geochronology, geochemistry, and provenance of the Grenvillian Huiznopala Gneiss of Eastern Mexico: Precambrian research, v.94, no. 1–2, p. 73–90. doi:10.1016/S0301-9268(98)00108-9
  • Lee, H.Y., and Ganguly, J., 1988, Equilibrium compositions of coexisting garnet and orthopyroxene: Experimental determinations in the system FeO-MgO-Al2O3-SiO2, an application: journal of Petrology, v. 29, no. 1, p. 93–113. doi:10.1093/petrology/29.1.93
  • Li, Z.X., Bogdanova, S.V., Collins, A.S., Davidson, A., De Waele, B., Ernst, R.E., Fitzsimons, I.C.W., Fuck, R.A., Gladkochub, D.P., Jacobs, J., Karlstrom, K.E., Lu, S., Natapov, L.M., Pease, V., Pisarevsky, S.A., Thrane, K., and Vernikovsky, V., 2008, Assembly, configuration, and break-up history of Rodinia: A synthesis: Precambrian Research, v. 160, p. 179–210. doi:10.1016/j.precamres.2007.04.021
  • Liu, Z., Bartoli, O., Tong, L., Carvalho, B.B., Xu, Y.G., Gianola, O., and Li, C., 2020, Anatexis and metamorphic history of Permian pelitic granulites from the southern Chinese Altai: Constraints from petrology, melt inclusions and phase equilibria modelling: Lithos, v. 360–361, p. 105432. doi:10.1016/j.lithos.2020.105432
  • Lozano, R., and Bernal, J.P., 2005, Characterization of a new set of eight geochemical reference materials for XRF major and trace element analysis: Revista Mexicana de Ciencias Geológicas, v. 22, no. 3, p.329–344.
  • Luvizotto, G.L., Zack, T., Meyer, H.P., Ludwig, T., Triebold, S., Kronz, A., Münker, C., Stockli, D.F., Prowatke, S., Klemme, S., Jacob, D.E., and von Eynatten, H., 2009, Rutile crystals as potential trace element and isotope mineral standards for microanalysis: chemical Geology, v. 261, no. 3–4, p. 346–369. doi:10.1016/j.chemgeo.2008.04.012
  • Martignole, J., and Martelat, J.E., 2003, Regional-scale Grenvillian-age UHT metamorphism in the Mollendo-Camana block (basement of the Peruvian Andes): journal of Metamorphic Geology, v. 21, no. 1, p. 99–120. doi:10.1046/j.1525-1314.2003.00417.x
  • Mathavan, V., and Fernando, G.W.A.R., 2001, Reactions and textures in grossular-wollastonite-scapolite calc-silicate granulites from Maligawila, Sri Lanka: Evidence for high-temperature isobaric cooling in the meta-sediments of the Highland Complex: Lithos, v. 59, no. 4, p. 217–232. doi:10.1016/S0024-4937(01)00057-3
  • Meinhold, G., Anders, B., Kostopoulos, D., & Reischmann, T. (2008). Rutile chemistry and thermometry as provenance indicator: an example from Chios Island, Greece. Sedimentary Geology, 203(1–2), 98–111. 10.1016/j.sedgeo.2007.11.004
  • Mora, C.I., and Valley, J.W., 1985, Ternary feldspar thermometry in granulites from the Oaxacan Complex, Mexico: contributions to Mineralogy and Petrology, v. 89, no. 2–3, p. 215–225. doi:10.1007/BF00379455
  • Mora, C. I., & Valley, J. W. (1985). Ternary feldspar thermometry in granulites from the Oaxacan Complex, Mexico. Contributions to Mineralogy and Petrology, 89(2), 215–225. 10.1007/BF00379455
  • Mora, C., Valley, J., and Ortega-Gutiérrez, F., 1986, The temperature and pressure conditions of Grenville-age granulite facies metamorphism of the Oaxacan Complex, southern Mexico: Univ Nac Auton México Rev Inst Geol, v. 6, p. 222–242.
  • Murillo-Muñetón, G., 1994. Petrologic and Geochronologic Study of Grenville-Age Granulites and post-granulite plutons from the La Mixtequita Area, State of Oaxaca in Southern Mexico, and their tectonic significance. [M.Sc. thesis]. University of, Southern California, USA 163p., 329–344
  • Newton, R.C., Smith, J.V., and Windley, B.F., 1980, Carbonic metamorphism, granulites and crustal growth: Nature, v. 288, no. 5786, p. 45–50. doi:10.1038/288045a0
  • Norman, M.D., Pearson, N.J., Sharma, A., and Griffin, W.L., 1996, Quantitative analysis of trace elements in geological materials by laser ablation ICPMS: Instrumental operating conditions and calibration values of NIST glasses: Geostandards and Geoanalytical Research, v. 20, no. 2, p. 247–261. doi:10.1111/j.1751-908X.1996.tb00186.x
  • Norrish, K., and Hutton, J.T., 1969, An accurate X-ray spectrographic method for the analysis of a wide range of geological samples: Geochimica et Cosmochimica Acta, v. 33, no. 4, p. 431–453. doi:10.1016/0016-7037(69)90126-4
  • Orozco-Esquivel, M.T., 1991, Geotermobarometría de granulitas precámbricas del basamento de la Sierra Madre Oriental: Convención sobre la Evolución Geológica de México. Universidad Nacional Autónoma de México, in Instituto de Geología, Memoria, p. 138–140.
  • Ortega-Gutiérrez, F., 1977, Los mármoles intrusivos del Complejo Oaxaqueño: The Revista Mexicana de Ciencias Geológicas, v. 1, p. 28–32.
  • Ortega-Gutiérrez, F., 1981, Metamorphic belts of southern Mexico and their tectonic significance: Geofísica Internacional, v. 20, no. 3, p. 177–202. doi:10.22201/igeof.00167169p.1981.20.3.1085
  • Ortega-Gutiérrez, F., 1984, Evidence of Precambrian evaporites in the Oaxacan granulite complex of southern Mexico: Precambrian research, v. 23, no. 3–4, p. 377–393. doi:10.1016/0301-9268(84)90051-2
  • Ortega-Gutiérrez, F., Ruiz, J., and Centeno-García, E., 1995, Oaxaquia, a Proterozoic microcontinent accreted to North America during the late Paleozoic: Geology, v. 23, no. 12, p. 1127–1130. doi:10.1130/0091-7613(1995)023<1127:OAPMAT>2.3.CO;2
  • Ortega-Gutiérrez, F., Elías-Herrera, M., Morán-Zenteno, D.J., Solari, L., Weber, B., and Luna-González, L., 2018, The pre-Mesozoic metamorphic basement of Mexico, 1.5 billion years of crustal evolution: Earth-Science reviews, v. 183, p.2–37. doi:10.1016/j.earscirev.2018.03.006
  • Palin, R.M., and White, R.W., 2016, Emergence of blueschists on Earth linked to secular changes in oceanic crust composition: nature Geoscience, v. 9, no. 1, p. 60–64. doi:10.1038/ngeo2605
  • Patchett, P.J., and Ruiz, J., 1987, Nd isotopic ages of crust formation and metamorphism in the Precambrian of eastern and southern Mexico: contributions to Mineralogy and Petrology, v. 96, no. 4, p. 523–528. doi:10.1007/BF01166697
  • Patiño Douce, A.E., Johnston, A.D., and Rice, J.M., 1993, Octahedral excess mixing properties in biotite: A working model with applications to geobarometry and geothermometry: American Mineralogist, v. 78, p. 113–131.
  • Perkins, D., and Chipera, S., 1985, Garnet-orthopyroxene-plagioclase-quartz barometry: Refinement and application to the English River subprovince and the Minnesota River valley: contributions to Mineralogy and Petrology, v. 89, no. 1, p. 69–80. doi:10.1007/BF01177592
  • Pisarevsky, S.A., Wingate, M.T.D., Powell, C.M., Johnson, S., and Evans, D.A.D., 2003, Models of Rodinia assembly and fragmentation: geological Society, London, Special Publications, v. 206, no. 1, p. 35–55. doi:10.1144/GSL.SP.2003.206.01.04
  • Powell, R., and Holland, T., 1999, Relating formulations of the thermodynamics of mineral solid solutions; activity modeling of pyroxenes, amphiboles, and micas: American Mineralogist, v. 84, no. 1–2, p. 1–14. doi:10.2138/am-1999-1-201
  • Powell, R., and Holland, T.J.B., 2008, On thermobarometry: journal of Metamorphic Geology, v. 26, no. 2, p. 155–179. doi:10.1111/j.1525-1314.2007.00756.x
  • Putirka, K., 2016, Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes: American Mineralogist, v. 101, no. 4, p. 841–858. doi:10.2138/am-2016-5506
  • Restrepo-Pace, P.A., Ruiz, J., Gehrels, G., and Cosca, M., 1997, Geochronology and Nd isotopic data of Grenville-age rocks in the Colombian Andes: New constraints for Late Proterozoic-Early Paleozoic paleocontinental reconstructions of the Americas: Earth and Planetary Science Letters, v. 150, no. 3–4, p. 427–441. doi:10.1016/s0012-821x(97)00091-5
  • Roberts, S.J., and Ruiz, J., 1989, Geochemistry of exposed granulite facies terrains and lower crustal xenoliths in Mexico: journal of Geophysical Research, v.94, no. B6, p. 7961–7974. doi:10.1029/JB094iB06p07961
  • Rudnick, R.L., and Fountain, D.M., 1995, Nature and composition of the continental crust: A lower crustal perspective: Reviews of Geophysics, v. 33, p. 267–309.
  • Ruiz, J., Patchett, P.J., and Ortega-Gutierrez, F., 1988, Proterozoic and Phanerozoic basement terranes of Mexico from Nd isotopic studies: geological Society of America Bulletin, v. 100, no. 2, p. 274–281. doi:10.1130/0016-7606(1988)100<0274:PAPBTO>2.3.CO;2
  • Sandiford, M., and Powell, R., 1986, Pyroxene exsolution in granulites from Fyfe Hills, Enderby Land, Antarctica: Evidence for 1000 °C metamorphic temperatures in Archean continental crust: American Mineralogist, v. 71, p. 946–954.
  • Schorn, S., Diener, J.F.A., Powell, R., and Stüwe, K., 2018, Thermal buffering in the orogenic crust: Geology, v. 46, no. 7, p. 643–646. doi:10.1130/G40246.1
  • Shchepetilnikova, V., Solé, J., Solari, L., and Abdullin, F., 2015, A chronological and chemical zircon study of some pegmatite dikes and lenses from the central part (Ayoquezco-Ejutla) of the Oaxacan Complex, southern Mexico: The Revista Mexicana de Ciencias Geológicas, v. 32, p. 123–143.
  • Sizova, E., Gerya, T., and Brown, M., 2014, Contrasting styles of Phanerozoic and Precambrian continental collision: Gondwana research, v. 25, no. 2, p. 522–545. doi:10.1016/j.gr.2012.12.011
  • Solari, L.A., Dostal, J., Ortega-Gutiérrez, F., and Keppie, J.D., 2001, The 275 Ma arc-related La Carbonera stock in the northern Oaxacan Complex of southern Mexico: U-Pb geochronology and geochemistry: The Revista Mexicana de Ciencias Geológicas, v. 18, p. 149–161.
  • Solari, L.A., Keppie, J.D., Ortega-Gutiérrez, F., Cameron, K.L., Lopez, R., and Hames, W.E., 2003, 990 and 1100 Ma Grenvillian tectonothermal events in the northern Oaxacan Complex, southern Mexico: Roots of an orogen: Tectonophysics, v. 365, no. 1–4, p. 257–282. doi:10.1016/S0040-1951(03)00025-8
  • Solari, L.A., Keppie, J.D., Ortega-Gutiérrez, F., Cameron, K.L., and Lopez, R., 2004a, ∼990 Ma peak granulitic metamorphism and amalgamation of Oaxaquia, Mexico: U-Pb zircon geochronological and common Pb isotopic data: The Revista Mexicana de Ciencias Geológicas, v. 21, p. 212–225.
  • Solari, L.A., Keppie, J.D., Ortega-Gutiérrez, F., Ortega-Rivera, A., Hames, W.E., and Lee, J.K.W., 2004b, Phanerozoic Structures in the Grenvillian Northern Oaxacan Complex, Southern Mexico: Result of thick-skinned tectonics: international Geology Review, v. 46, no. 7, p. 614–628. doi:10.2747/0020-6814.46.7.614
  • Solari, L.A., Ortega-Gutiérrez, F., Elías-Herrera, M., Ortega-Obregón, C., Macías-Romo, C., and Reyes-Salas, M., 2014, Detrital provenance of the Grenvillian Oaxacan Complex, southern Mexico: A zircon perspective: International Journal of Earth sciences, v. 103, no. 5, p. 1301–1315. doi:10.1007/s00531-013-0938-9
  • Solari, L.A., Ortega-Obregón, C., Ortega-Gutiérrez, F., and Elías-Herrera, M., 2020. Origin and evolution of the Grenvillian Oaxacan Complex, southern Mexico: Hf isotopic and U-Pb geochronologic constraints, in: Southern and Central Mexico: Basement framework, tectonic evolution, and provenance of Mesozoic–Cenozoic basins. Geol. Soc. America Special Paper 546. doi:10.1130/2020.2546(03)
  • Stormer, J.C., 1975, A practical two-feldspar geothermometer: American Mineralogist, v. 60, p. 667–674.
  • Tajčmanová, L., Connolly, J.A.D., and Cesare, B., 2009, A thermodynamic model for titanium and ferric iron solution in biotite: journal of Metamorphic Geology, v. 27, no. 2, p. 153–165. doi:10.1111/j.1525-1314.2009.00812.x
  • Taylor-Jones, K., and Powell, R., 2015, Interpreting zirconium-in-rutile thermometric results: journal of Metamorphic Geology, v. 33, no. 2, p. 115–122. doi:10.1111/jmg.12109
  • Thomas, J.B., Watson, E.B., Spear, F.S., Shemella, P.T., Nayak, S.K., and Lanzirotti, A., 2010, TitaniQ under pressure: The effect of pressure and temperature on the solubility of Ti in quartz: Contributions to mineralogy and Petrology, v. 160, no. 5, p. 743–759. doi:10.1007/s00410-010-0505-3
  • Tolson, G., 2007, The Chacalapa fault, southern Oaxaca, México: GSA Special Papers, v. 422, p. 343 357.
  • Tomkins, H.S., Powell, R., and Ellis, D.J., 2007, The pressure dependence of the zirconium-in-rutile thermometer: journal of Metamorphic Geology, v. 25, no. 6, p. 703–713. doi:10.1111/j.1525-1314.2007.00724.x
  • Trainor, R.J., Nance, R.D., and Keppie, J.D., 2011, Tectonothermal history of the Mesoproterozoic Novillo Gneiss of eastern Mexico: Support for a coherent Oaxaquia microcontinent: The Revista Mexicana de Ciencias Geológicas, v. 28, p. 580–592.
  • Valencia Morales, Y.T., (2017). Geología y petrología de la anortosita Cacaotepec, Complejo Oaxaqueño, sur de México. ( Ms. Thesis). Universidad Nacional Autónoma de México, México.
  • Van Kranendonk, M.J., and Kirkland, C.L., 2013, Orogenic climax of Earth: The 1.2-1.1 Ga Grenvillian superevent: Geology, v. 41, no. 7, p. 735–738. doi:10.1130/G34243.1
  • Vernon, R.H., 2011, Microstructures of melt-bearing regional metamorphic rocks: Memoir of the Geological Society of America, v. 207, p.1–11. doi:10.1130/2011.1207(01)
  • Vielzeuf, D., Clemens, J.D., Pin, C., and Moinet, E., 1990, Granites, Granulites, and Crustal Differentiation, in Vielzeuf, D., and Vidal, P., eds., Granulites and Crustal Evolution. NATO ASI Series (Series C: Mathematical and Physical Sciences), Dordrecht, Springer, p.311. doi:10.1007/978-94-009-2055-2_5
  • Wark, D.A., and Watson, E.B., 2006, TitaniQ: A titanium-in-quartz geothermometer: contributions to Mineralogy and Petrology, v. 152, no. 6, p. 743–754. doi:10.1007/s00410-006-0132-1
  • Waters, D.J., 1988, Partial melting and the formation of granulite facies assemblages in Namaqualand, South Africa: journal of Metamorphic Geology, v. 6, no. 4, p. 387–404. doi:10.1111/j.1525-1314.1988.tb00430.x
  • Waters, D.J., 2001, The significance of prograde and retrograde quartz-bearing intergrowth microstructures in partially melted granulite-facies rocks: Lithos, v. 56, no. 1, p. 97–110. doi:10.1016/s0024-4937(00)00061-x
  • Watson, E.B., Wark, D.A., and Thomas, J.B., 2006, Crystallization thermometers for zircon and rutile: contributions to Mineralogy and Petrology, v. 151, no. 4, p. 413–433. doi:10.1007/s00410-006-0068-5
  • Weber, B., and Köhler, H., 1999, Sm-Nd, Rb-Sr and U-Pb geochronology of a Grenville Terrane in Southern Mexico: Origin and geologic history of the Guichicovi Complex: Precambrian research, v. 96, no. 3–4, p. 245–262. doi:10.1016/s0301-9268(99)00012-1
  • Weber, B., Scherer, E.E., Schulze, C., Valencia, V.A., Montecinos, P., Mezger, K., and Ruiz,J., 2010, U-Pb and Lu-Hf isotope systematics of lower crust from central-southern Mexico - Geodynamic significance of Oaxaquia in a Rodinia Realm: Precambrian research, v. 182, no. 1–2, p. 149–162. doi:10.1016/j.precamres.2010.07.007
  • Weber, B., and Schulze, C.H., 2014, Early Mesoproterozoic (>1.4 Ga) ages from granulite basement inliers of SE Mexico and their implications on the Oaxaquia concept - Evidence from U-Pb and Lu-Hf isotopes on zircon: The Revista Mexicana de Ciencias Geológicas, v. 31, p. 377–394.
  • White, R.W., Powell, R., and Holland, T.J.B., 2001, Calculation of partial melting equilibria in the system Na 2 O-CaO-K 2 O-FeO-MgO-Al 2 O 3 -SiO 2 -H 2 O (NCKFMASH): journal of Metamorphic Geology, v. 19, no. 2, p. 139–153. doi:10.1046/j.0263-4929.2000.00303.x
  • White, R.W., Powell, R., Holland, T.J.B., Johnson, T.E., and Green, E.C.R., 2014, New mineral activity-composition relations for thermodynamic calculations in metapelitic systems: journal of Metamorphic Geology, v. 32, no. 3, p. 261–286. doi:10.1111/jmg.12071
  • Whitney, D.L., and Evans, B.W., 2010, Abbreviations for names of rock-forming minerals: American Mineralogist, v. 95, no. 1, p. 185–187. doi:10.2138/am.2010.3371
  • Wu, S., Yin, C., Davis, D.W., Zhang, J., Qian, J., Qiao, H., Xia, Y., and Liu, J., 2020, Metamorphic evolution of high-pressure felsic and pelitic granulites from the Qianlishan Complex and tectonic implications for the Khondalite Belt, North China Craton: GSA Bulletin, v. 132, no. 11–12, p. 2253–2266. doi:10.1130/B35502.1
  • Zack, T., Moraes, R., and Kronz, A., 2004, Temperature dependence of Zr in rutile: Empirical calibration of a rutile thermometer: Contributions to mineralogy and Petrology, v. 148, no. 4, p. 471–488. doi:10.1007/s00410-004-0617-8
  • Zack, T., and Kooijman, E., 2018, Petrology and geochronology of rutile: Petrochronology: Methods and Applications, v. 83, p. 443–467. doi:10.2138/rmg.2017.83.14

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.