332
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Volatile accumulation for the mineralization of Li–Be pegmatites in the northeastern Pamir, Western Kunlun, China

, &
Pages 1354-1371 | Received 29 Dec 2021, Accepted 04 Jun 2022, Published online: 11 Jun 2022

References

  • Audétat, A., and Pettke, T., 2003, The magmatic-hydrothermal evolution of two barren granites: A melt and fluid inclusion study of the Rito del Medio and Cañada Pinabete plutons in northern New Mexico (USA), Geochimica et Cosmochimica Acta, v. 67 no. 1, p. 97–121. 10.1016/S0016-7037(02)01049-9
  • Ballouard, C., Poujol, M., Boulvais, P., Branquet, Y., Tartèse, R., and Vigneresse, J.-L., 2016, Nb-Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition, Geology, v. 44 no. 3, p. 231–234. 10.1130/G37475.1
  • Barbarin, B., 1996, Genesis of the two main types of peraluminous granitoids, Geology, v. 24 no. 4, p. 295–298. 10.1130/0091-7613(1996)024<0295:GOTTMT>2.3.CO;2
  • Bershaw, J., Garzione, C.N., Schoenbohm, L., Gehrels, G., and Tao, L., 2012, Cenozoic evolution of the Pamir plateau based on stratigraphy, zircon provenance, and stable isotopes of foreland basin sediments at Oytag (Wuyitake) in the Tarim Basin (west China), Journal of Asian Earth Sciences, v. 44, p. 136–148. 10.1016/j.jseaes.2011.04.020
  • Bradley, D.C., McCauley, A.D., and Stillings, L.L., 2017. Mineral-deposit model for lithium-cesium-tantalum pegmatites. U.S. Geological Survey Scientific Investigations Report 2010-5070-O.
  • Burtman, V.S., and Molnar, P.H., 1993, Geological and geophysical evidence for deep subduction of continental crust beneath the Pamir, Geological Society of America.
  • Černý, P., 1991a, Fertile granites of Precambrian rare-element pegmatite fields: Is geochemistry controlled by tectonic setting or source lithologies?, Precambrian Research, v. 51 no. 1–4, p. 429–468. 10.1016/0301-9268(91)90111-M
  • Černý, P., 1991b, Rare-element granitic pegmatites. Part II: Regional to global environments and petrogenesis, Geoscience Canada. 18, 68-81.
  • Černý, P., Blevin, P.L., Cuney, M., and London, D., 2005, Granite-related ore deposits, Economic Geology 100th Anniversary, p. 337–370.
  • Černý, P., London, D., and Novák, M., 2012, Granitic pegmatites as reflections of their sources, Elements, v. 8 no. 4, p. 289–294. 10.2113/gselements.8.4.289
  • Chappell, B.W., 1999, Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites, Lithos, v. 46 no. 3, p. 535–551. 10.1016/S0024-4937(98)00086-3
  • Che, X.-D., Wu, F.-Y., Wang, R.-C., Gerdes, A., Ji, W.-Q., Zhao, Z.-H., Yang, J.-H., and Zhu, Z.-Y., 2015, In situ U–Pb isotopic dating of columbite–tantalite by LA–ICP–MS, Ore Geology Reviews, v. 65, p. 979–989. 10.1016/j.oregeorev.2014.07.008
  • Chen, C., Lee, C.-T.A., Tang, M., Biddle, K., and Sun, W., 2020, Lithium systematics in global arc magmas and the importance of crustal thickening for lithium enrichment, Nature Communications, v. 11 no. 1, p. 5313. 10.1038/s41467-020-19106-z
  • Clarke, D.B., 2019, The origins of strongly peraluminous granitoid rocks, The Canadian Mineralogist, v. 57 no. 4, p. 529–550. 10.3749/canmin.1800075
  • Dingwell, D.B., Knoche, R., Webb, S.L., and Pichavant, M., 1992, The effect of B2O3 on the viscosity of haplogranitic liquids, American Mineralogist, v. 77, p. 457–461.
  • Dingwell, D.B., Knoche, R., and Webb, S.L., 1993, The effect of P2O5 on the viscosity of haplogranitic liquid, European Journal of Mineralogy, v. 5 no. 1, p. 133–140. 10.1127/ejm/5/1/0133
  • Gelman, S.E., Deering, C.D., Bachmann, O., Huber, C., and Gutierrez, F.J., 2014, Identifying the crystal graveyards remaining after large silicic eruptions, Earth and Planetary Science Letters, v. 403, p. 299–306. 10.1016/j.epsl.2014.07.005
  • Halter, W.E., and Webster, J.D., 2004, The magmatic to hydrothermal transition and its bearing on ore-forming systems, Chemical Geology, v. 210 no. 1–4, p. 1–6. 10.1016/j.chemgeo.2004.06.001
  • Harris, N.B.W., and Inger, S., 1992, Trace element modelling of pelite-derived granites, Contributions to Mineralogy and Petrology, v. 110 no. 1, p. 46–56. 10.1007/BF00310881
  • Jahns, R.H., 1953, The genesis of pegmatites: I. Occurrence and origin of giant crystals, American Mineralogist, v. 38, p. 563–598.
  • Jiang, Y.-H., Jia, R.-Y., Liu, Z., Liao, S.-Y., Zhao, P., and Zhou, Q., 2013, Origin of middle Triassic high-K calc-alkaline granitoids and their potassic microgranular enclaves from the western Kunlun orogen, northwest China: A record of the closure of Paleo-Tethys, Lithos, v. 156, p. 13–30. 10.1016/j.lithos.2012.10.004
  • Li, J., Zou, T., Liu, X., Wang, D., and Ding, X., 2015, The metallogenetic regularities of lithium deposits in China, Acta Geologica Sinica(English Edition), v. 89 no. 2, p. 652–670. 10.1111/1755-6724.12453
  • Li, P., Li, J., Chou, I.-M., Wang, D., and Xiong, X., 2019, Mineralization Epochs of Granitic Rare-Metal Pegmatite Deposits in the Songpan–Ganzê Orogenic Belt and Their Implications for Orogeny, Minerals, v. 9 no. 5, p. 280. 10.3390/min9050280
  • Liu, Y., Hu, Z., Gao, S., Günther, D., Xu, J., Gao, C., and Chen, H., 2008, In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard, Chemical Geology, v. 257 no. 1–2, p. 34–43. 10.1016/j.chemgeo.2008.08.004
  • Liu, Z., Jiang, Y.-H., Jia, R.-Y., Zhao, P., and Zhou, Q., 2015, Origin of Late Triassic high-K calc-alkaline granitoids and their potassic microgranular enclaves from the western Tibet Plateau, northwest China: Implications for Paleo-Tethys evolution, Gondwana Research, v. 27 no. 1, p. 326–341. 10.1016/j.gr.2013.09.022
  • London, D., 2005, Granitic pegmatites: An assessment of current concepts and directions for the future, Lithos, v. 80 no. 1–4, p. 281–303. 10.1016/j.lithos.2004.02.009
  • London, D., 2018, Ore-forming processes within granitic pegmatites, Ore Geology Reviews, v. 101, p. 349–383. 10.1016/j.oregeorev.2018.04.020
  • Ludwig, K., 2011, IsoPlot 4.13 , Boston, Berkely Geochronology Center.
  • Luth, W.C., Jahns, R.H., and Tuttle, O.F., 1964, The granite system at pressures of 4 to 10 kilobars, Journal of Geophysical Research, v. 1896-1977, p. 69, 759–773.
  • Maas, R., Nicholls, I.A., and Legg, C., 1997, Igneous and Metamorphic Enclaves in the S-type Deddick Granodiorite, Lachlan Fold Belt, SE Australia: Petrographic, Geochemical and Nd-Sr Isotopic Evidence for Crustal Melting and Magma Mixing, Journal of Petrology, v. 38 no. 7, p. 815–841. 10.1093/petroj/38.7.815
  • Martin, R.F., and De Vito, C., 2005, THE PATTERNS OF ENRICHMENT IN FELSIC PEGMATITES ULTIMATELY DEPEND ON TECTONIC SETTING, The Canadian Mineralogist, v. 43 no. 6, p. 2027–2048. 10.2113/gscanmin.43.6.2027
  • Miller, C.F., McDowell, S.M., and Mapes, R.W., 2003, Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance, Geology, v. 31 no. 6, p. 529–532. 10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2
  • Pan, Y., 1996. Geological evolution of the Karakorum and Kunlun Mountains Seismological Press (in Chinese).
  • Patiño Douce, A.E., and Harris, N., 1998, Experimental constraints on himalayan anatexis, Journal of Petrology, v. 39 no. 4, p. 689–710. 10.1093/petroj/39.4.689
  • Patiño Douce, A.E., 1999, What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geological Society, London, Special Publications, v. 168 no. 1, p. 55–75. 10.1144/GSL.SP.1999.168.01.05
  • Robinson, A.C., Yin, A., Manning, C.E., Harrison, T.M., Zhang, S.-H., and Wang, X.-F., 2004, Tectonic evolution of the northeastern Pamir: Constraints from the northern portion of the Cenozoic Kongur Shan extensional system, western China, Geological Society of America Bulletin, v. 116 no. 7, p. 953–973. 10.1130/B25375.1
  • Robinson, A.C., Ducea, M., and Lapen, T.J., 2012, Detrital zircon and isotopic constraints on the crustal architecture and tectonic evolution of the northeastern Pamir, Tectonics, v. 31 no. 2, p. 1–16. 10.1029/2011TC003013
  • Ryerson, F.J., and Hess, P.C., 1980, The role of P2O5 in silicate melts, Geochimica et Cosmochimica Acta, v. 44 no. 4, p. 611–624. 10.1016/0016-7037(80)90253-7
  • Shearer, C.K., Papike, J.J., and Laul, J.C., 1987, Mineralogical and chemical evolution of a rare-element granite-pegmatite system: Harney Peak Granite, Black Hills, South Dakota, Geochimica Et Cosmochimica Acta, v. 51 no. 3, p. 473–486. 10.1016/0016-7037(87)90062-7
  • Shearer, C.K., Papike, J.J., and Jolliff, B.L., 1992, Petrogenetic links among granites and pegmatites in the Harney Peak rare-element granite-pegmatite system, Black Hills, South Dakota, Canadian Mineralogist, v. 30, p. 785–809.
  • Sun, -S.-S., and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes, Geological Society, London, Special Publications, v. 42 no. 1, p. 313–345. 10.1144/GSL.SP.1989.042.01.19
  • Sylvester, P.J., 1998, Post-collisional strongly peraluminous granites, Lithos, v. 45 no. 1–4, p. 29–44. 10.1016/S0024-4937(98)00024-3
  • Taylor, S.R., and McLennan, S.M., 1995, The geochemical evolution of the continental crust, Reviews of Geophysics, v. 33 no. 2, p. 241–265. 10.1029/95RG00262
  • Thomas, R., Webster, J., and Davidson, P., 2011, Be-daughter minerals in fluid and melt inclusions: Implications for the enrichment of Be in granite–pegmatite systems, Contributions to Mineralogy and Petrology, v. 161 no. 3, p. 483–495. 10.1007/s00410-010-0544-9
  • Thomas, R., and Davidson, P., 2012, Water in granite and pegmatite-forming melts, Ore Geology Reviews, v. 46, p. 32–46. 10.1016/j.oregeorev.2012.02.006
  • Turekian, K., and Wedepohl, K.H., 1961, Distribution of the Elements in Some Major Units of the Earth’s Crust, geological Society of America Bulletin, v. 72 no. 2, p. 175–192. 10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2
  • Wang, D.-H., Zou, T.-R., Xu, Z.-G., Yu, J.-J., and Fu, X.-F., 2004, ADVANCE IN THE STUDY OF USING PEGMATITE DEPOSITS AS THE TRACER OF OROGENIC PROCESS, Advances in Earth Science, v. 19, p. 614–620. in Chinese with English abstract
  • Wang, C., Liu, L., Korhonen, F., Yang, W.-Q., Cao, Y.-T., He, S.-P., Zhu, X.-H., and Liang, W.-T., 2016, Origins of Early Mesozoic granitoids and their enclaves from West Kunlun, NW China: Implications for evolving magmatism related to closure of the Paleo-Tethys ocean, International Journal of Earth Sciences, v. 105 no. 3, p. 941–964. 10.1007/s00531-015-1220-0
  • Wang, H., Gao, H., Zhang, X.-Y., Yan, Q.-H., Xu, Y., Zhou, K., Dong, R., and Li, P., 2020, Geology and geochronology of the super-large Bailongshan Li–Rb–(Be) rare-metal pegmatite deposit, West Kunlun orogenic belt, NW China, Lithos, v. 360, p. 105449. 10.1016/j.lithos.2020.105449
  • Watson, E.B., and Harrison, T.M., 1983, Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types, Earth and Planetary Science Letters, v. 64 no. 2, p. 295–304. 10.1016/0012-821X(83)90211-X
  • Wei, X., Wang, H., Hu, J., Mu, S., Qiu, Z., Yan, Q., and Li, P., 2017, Geochemistry and geochronology of the Dahongliutan two-mica granite pluton in western Kunlun orogen: Geotectonic implications, Geochimica, v. 46, p. 66–80. in Chinese with English abstract
  • Wei, X., 2018. Spatial-temporal pattern, petrogenesis and tectonic implications of the Triassic granitoids from the Western Kunlun Orogen, Northwestern China ( PhD thesis), University of Chinese Academ of Sciences, p196 (in Chinese with English abstract).
  • Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., Quadt, A.V., Roddick, J.C., and Spiegel, W., 1995, THREE NATURAL ZIRCON STANDARDS FOR U-TH-PB, LU-HF, TRACE ELEMENT AND REE ANALYSES, Geostandards Newsletter, v. 19 no. 1, p. 1–23. 10.1111/j.1751-908X.1995.tb00147.x
  • Wolf, M.B., and London, D., 1994, Apatite dissolution into peraluminous haplogranitic melts: An experimental study of solubilities and mechanisms, Geochimica et Cosmochimica Acta, v. 58 no. 19, p. 4127–4145. 10.1016/0016-7037(94)90269-0
  • Wu, F.Y., Liu, X.C., Liu, Z.C., Wang, R.C., Xie, L., Wang, J.M., Ji, W.Q., Yang, L., Liu, C., Khanal, G.P., and He, S.X., 2020a, Highly fractionated himalayan leucogranites and associated rare-metal mineralization, Lithos, v. 352, p. 105319. 10.1016/j.lithos.2019.105319
  • Wu, F.Y., Wan, B., Zhao, L., Xiao, W.J., and Zhu, R.X., 2020b, Tethyan geodynamics, Acta Petrologica Sinica, v. 36 no. 6, p. 1627–1674. in Chinese with English abstract. 10.18654/1000-0569/2020.06.01
  • Xiao, W.J., Windley, B.F., Chen, H.L., Zhang, G.C., and Li, J.L., 2002, Carboniferous-Triassic subduction and accretion in the western Kunlun, China: Implications for the collisional and accretionary tectonics of the northern Tibetan Plateau, Geology, v. 30 no. 4, p. 295–298. 10.1130/0091-7613(2002)030<0295:CTSAAI>2.0.CO;2
  • Xiao, W.J., Windley, B.F., Liu, D.Y., Jian, P., Liu, C.Z., Yuan, C., and Sun, M., 2005, Accretionary Tectonics of the Western Kunlun Orogen, China: A Paleozoic–Early Mesozoic, Long‐Lived Active Continental margin with Implications for the growth of Southern Eurasia, The Journal of Geology, v. 113 no. 6, p. 687–705. 10.1086/449326
  • Xu, Z., Hou, L., Wang, Z., Fu, X., and Huang, M., 1992. Orogenic processes of the Songpan-Garze orogenic belt of China. Geol. Publ. House, Beijing, 1-235 (in Chinese).
  • Xu, Z., Fu, X., Wang, R., Li, G., Zheng, Y., Zhao, Z., and Lian, D., 2020, Generation of lithium-bearing pegmatite deposits within the Songpan-Ganze orogenic belt, Eastern Tibetan Lithos, v. 354-355, p. 105281. 10.1016/j.lithos.2019.105281
  • Yan, Q.H., Qiu, Z.W., Wang, H., Wang, M., Wei, X.P., Li, P., Zhang, R.Q., `, C.Y., and Liu, J.P., 2018, Age of the Dahongliutan rare metal pegmatite deposit, West Kunlun, Xinjiang (NW China): Constraints from LA–ICP–MS U–Pb dating of columbite-(Fe) and cassiterite, Ore Geology Reviews, v. 100, p. 561–573. 10.1016/j.oregeorev.2016.11.010
  • Yan, Q.-H., Wang, H., Chi, G., Wang, Q., Hu, H., Zhou, K., and Zhang, X.-Y., 2022, RECOGNITION OF A 600-KM-LONG LATE TRIASSIC RARE METAL (Li-Rb-Be-Nb-Ta) PEGMATITE BELT IN THE WESTERN Kunlun OROGENIC BELT, WESTERN China, Economic Geology, v. 117 no. 1, p. 213–236. 10.5382/econgeo.4858
  • Yang, Y.-H., Zhang, H.-F., Chu, Z.-Y., Xie, L.-W., and Wu, F.-Y., 2010, Combined chemical separation of Lu, Hf, Rb, Sr, Sm and Nd from a single rock digest and precise and accurate isotope determinations of Lu–Hf, Rb–Sr and Sm–Nd isotope systems using Multi-collector ICP-MS and TIMS, International Journal of Mass Spectrometry, v. 290 no. 2–3, p. 120–126. 10.1016/j.ijms.2009.12.011
  • Yang, W., 2013. The Indosinian metamorphism, magmatism and formation age of Bunlunkuole rock group in Taxkorgan-Kangxiwar tectonic belt Western Kunlun ( PhD thesis). Northwest University, Xi’an, p128 (in Chinese with English abstract).
  • Yin, J., and Bian, Q., 1995, Geologic map of the Karakorum– Western Kunlun and adjacent regions, volume Vol. 1: Beijing, Science Press, p. 2M.
  • Yin, A., and Harrison, T.M., 2000, Geologic Evolution of the Himalayan-Tibetan Orogen, Annual Review of Earth and Planetary Sciences, v. 28 no. 1, p. 211–280. 10.1146/annurev.earth.28.1.211
  • Yuan, C., Sun, M., Zhou, M.-F., Zhou, H., Xiao, W.-J., and Li, J.-L., 2002, Tectonic Evolution of the West Kunlun: Geochronologic and Geochemical constraints from Kudi Granitoids, International Geology Review, v. 44 no. 7, p. 653–669. 10.2747/0020-6814.44.7.653
  • Zagorsky, V.Y., Vladimirov, A.G., Makagon, V.M., Kuznetsova, L.G., Smirnov, S.Z., D’yachkov, B.A., Annikova, I.Y., Shokalsky, S.P., and Uvarov, A.N., 2014, Large fields of spodumene pegmatites in the settings of rifting and postcollisional shear–pull-apart dislocations of continental lithosphere, Russian Geology and Geophysics, v. 55 no. 2, p. 237–251. 10.1016/j.rgg.2014.01.008
  • Zhang, C., Yu, H., Wang, A., and Guo, K., 2005, Dating of Triassic granites in the Western Kunlun mountains and its tectonic significance, Acta Geologica Sinica, v. 79, p. 645–652. in Chinese with English abstract
  • Zhang, Y., Niu, Y., Hu, Y., Liu, J., Ye, L., Kong, J., Duan, M., 2016. The syncollisional granitoid magmatism and continental crust growth in the West Kunlun Orogen, China – Evidence from geochronology and geochemistry of the Arkarz pluton. Lithos 245, 191–204. 10.1016/j.lithos.2015.05.007
  • Zhang, C.-L., Zou, H.-B., Ye, X.-T., and Chen, X.-Y., 2018, Tectonic evolution of the NE section of the Pamir Plateau: New evidence from field observations and zircon U-Pb geochronology, Tectonophysics, v. 723, p. 27–40. 10.1016/j.tecto.2017.11.036
  • Zhang, C.-L., Ma, H., Zhu, B., Ye, X.-T., Qiu, L., Zhao, H., Liu, X., Ding, T., Wang, Q., and He, X., 2019a, Tectonic evolution of the Western Kunlun-Karakorum orogenic belt and its coupling with the mineralization effect, Geological Review, v. 65, p. 1077–1102. in Chinese with English abstract
  • Zhang, Q., Liu, Y., Wu, Z., Huang, H., Li, K., and Zhou, Q., 2019b, Late Triassic granites from the northwestern margin of the Tibetan Plateau, the Dahongliutan example: Petrogenesis and tectonic implications for the evolution of the Kangxiwa Palaeo-Tethys, International Geology Review, v. 61 no. 2, p. 175–194. 10.1080/00206814.2017.1419444
  • Zhang, Z., Liang, T., Feng, Y., Yang, X., Li, K., Ding, K., and Wang, Y., 2019c, Geological feature and chronology study of Kangxiwar Beryl-bearing muscovite pegmatite in West Kunlun Orogen, Xinjiang, Northwestern Geology, v. 52, p. 75–88. in Chinese with English abstract
  • Zhang, Z., Liang, T., Feng, Y., Yang, X., Li, K., Ding, K., Wang, Y., 2019c. Geological feature and chronology study of Kangxiwar Beryl-bearing muscovite pegmatite in West Kunlun Orogen, Xinjiang. Northwestern Geology 52, 75–88 ( in Chinese with English abstract).
  • Zhao, Z.B., Du, J.X., Liang, F.H., Wu, C., Liu, X.J., 2019. Structure and Metamorphism of Markam Gneiss Dome From the Eastern Tibetan Plateau and Its Implications for Crustal Thickening, Metamorphism, and Exhumation. Geochemistry, Geophysics, Geosystems 20, 24–45. 10.1029/2018GC007617
  • Zheng, M., 2017. Ore-forming study of the Early Cambrian iron (barite) metallogenic sub-belt in the Taxkorgan iron polymetallic belt, West Kunlun. (Doctoral Dissertation. Beijing, University of Chinese Academy of Sciences) (in Chinese with English abstract).
  • Zheng, Y., Xu, Z., Li, G., Lian, D., Zhao, Z., Ma, Z., and Gao, W., 2020, Genesis of the Markam gneiss dome within the Songpan-Ganzi orogenic belt, eastern Tibetan Plateau, Lithos, v. 362-363, p. 105475. 10.1016/j.lithos.2020.105475

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.