194
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Origin of high-Cr podiform chromitites from Kabaena Island, Southeast Sulawesi, Indonesia: constraints from mineralogy and geochemistry

, , ORCID Icon, , , & show all
Pages 2943-2960 | Received 05 Oct 2022, Accepted 07 Jan 2023, Published online: 16 Jan 2023

References

  • Akmaz, R.M., Uysal, I., and Saka, S., 2014, Compositional variations of chromite and solid inclusions in ophiolitic chromitites from the southeastern Turkey: Implications for chromitite genesis: Ore Geology Reviews, v. 58, p. 208–224. 10.1016/j.oregeorev.2013.11.007
  • Andrews, D.R., and Brenan, J.M., 2002, Phase-equilibrium constraints on the magmatic origin of laurite + Ru–Os–Ir alloy: The Canadian Mineralogist, v. 40, no. 6, p. 1705–1716. 10.2113/gscanmin.40.6.1705
  • Arai, S., 1980, Dunite—harzburgite—chromitite complexes as refractory residue in the Sangun—Yamaguchi zone, western Japan: Journal of Petrology, v. 21, no. 1, p. 141–165. 10.1093/petrology/21.1.141
  • Arai, S., 1994, Characterization of spinel peridotites by olivine-spinel compositional relationships: Review and interpretation: Chemical Geology, v. 113, no. 3–4, p. 191–204. 10.1016/0009-2541(94)90066-3
  • Arai, S., 1997, Origin of podiform chromitites: Journal of Asian Earth Sciences, v. 15, No. 2–3, p. 303–310
  • Arai, S., 2013, Conversion of low-pressure chromitites to ultrahigh-pressure chromitites by deep recycling: A good inference: Earth and Planetary Science Letters, v. 379, p. 81–87. 10.1016/j.epsl.2013.08.006
  • Arai, S., Uesugi, J., and Ahmed, A. H., 2004, Upper crustal podiform chromitite from the northern Oman ophiolite as the stratigraphically shallowest chromitite in ophiolite and its implication for Cr concentration: Contributions to Mineralogy and Petrology, v. 147, no. 2, p. 145–154. 10.1007/s00410-004-0552-8
  • Arai, S., and Yurimoto, H., 1994, Podiform chromitites of the Tari-Misaka ultramafic complex, southwestern Japan, as mantle-melt interaction products: Economic Geology, v. 89, no. 6, p. 1279–1288. 10.2113/gsecongeo.89.6.1279
  • Bai, Y., Su, B.-X., Chen, C., Yang, S.-H., Liang, Z., Xiao, Y., Qin, K.-Z., and Malaviarachchi, S.P., 2017, Base metal mineral segregation and Fe-Mg exchange inducing extreme compositions of olivine and chromite from the Xiadong Alaskan-type complex in the southern part of the Central Asian Orogenic Belt: Ore Geology Reviews, v. 90, p. 184–192. 10.1016/j.oregeorev.2017.01.023
  • Bao, P.-S., 2009, Further discussion on the genesis of the podiform chromite deposits in the ophiolites–questioning about the rock/melt interaction metallogeny: Geological Bulletin of China, v. 28, p. 1941–1961
  • Barnes, S.J., and Roeder, P.L., 2001, The range of spinel compositions in terrestrial mafic and ultramafic rocks: Journal of Petrology, v. 42, no. 12, p. 2279–2302. 10.1093/petrology/42.12.2279
  • Bergman, S.C., Coffield, D.Q., Talbot, J.P., and Garrard, R.A., 1996, Tertiary tectonic and magmatic evolution of western Sulawesi and the Makassar Strait, Indonesia: Evidence for a Miocene continent-continent collision: Geological Society, London, Special Publications, v. 106, no. 1, p. 391–429. 10.1144/GSL.SP.1996.106.01.25
  • Blundy, J., Melekhova, E., Ziberna, L., Humphreys, M.C., Cerantola, V., Brooker, R.A., McCammon, C.A., Pichavant, M., and Ulmer, P., 2020, Effect of redox on Fe–Mg–Mn exchange between olivine and melt and an oxybarometer for basalts: Contributions to Mineralogy and Petrology, v. 175, no. 11, p. 1–32. 10.1007/s00410-020-01736-7
  • Bockrath, C., Ballhaus, C., and Holzheid, A., 2004, Stabilities of laurite RuS2 and monosulfide liquid solution at magmatic temperature: Chemical Geology, v. 208, no. 1–4, p. 265–271. 10.1016/j.chemgeo.2004.04.016
  • Bonavia, F., Diella, V., and Ferrario, A., 1993, Precambrian podiform chromitites from Kenticha Hill, southern Ethiopia: Economic Geology, v. 88, no. 1, p. 198–202. 10.2113/gsecongeo.88.1.198
  • Brenan, J.M., and Andrews, D., 2001, High-temperature stability of laurite and Ru–Os–Ir alloy and their role in PGE fractionation in mafic magmas: The Canadian Mineralogist, v. 39, no. 2, p. 341–360. 10.2113/gscanmin.39.2.341
  • Dobrzhinetskaya, L.F., Wirth, R., Yang, J., Hutcheon, I.D., Weber, P.K., and Green, H.W., 2009, High-pressure highly reduced nitrides and oxides from chromitite of a Tibetan ophiolite: Proceedings of the National Academy of Sciences, v. 106, p. 19233–19238. 10.1073/pnas.0905514106
  • Dönmez, C., Keskin, S., Günay, K., Çolakoğlu, A.O., Çiftçi, Y., Uysal, İ., Türkel, A., and Yıldırım, N., 2014, Chromite and PGE geochemistry of the Elekdağ Ophiolite (Kastamonu, Northern Turkey): Implications for deep magmatic processes in a supra-subduction zone setting: Ore Geology Reviews, v. 57, p. 216–228. 10.1016/j.oregeorev.2013.09.019
  • Fadhlurrohman, I., Parma, A.F., and Fitriani, C., 2017, Geological observation on Kabaena island, southeast Sulawesi: An implication of hydrocarbon occurrence in a frontier area based on outcrop study.
  • Farré-de-pablo, J., Proenza, J.A., González-Jiménez, J.M., Garcia-Casco, A., Colás, V., Roqué-Rossell, J., Camprubí, A., and Sánchez-Navas, A., 2019, A shallow origin for diamonds in ophiolitic chromitites: Geology, v. 47, no. 1, p. 75–78. 10.1130/G45640.1
  • Gale, A., Dalton, C.A., Langmuir, C.H., Su, Y., and Schilling, J.G., 2013, The mean composition of ocean ridge basalts: Geochemistry: Geophysics, Geosystems, v. 14, no. 3, p. 489–518. 10.1029/2012GC004334
  • Gervilla, F., Proenza, J., Frei, R., Gonzalez-Jimenez, J.M., Garrido, C.J., Melgarejo, J., Meibom, A., Díaz-Martínez, R., and Lavaut, W., 2005, Distribution of platinum-group elements and Os isotopes in chromite ores from Mayarí-Baracoa Ophiolitic Belt (eastern Cuba: Contributions to Mineralogy and Petrology, v. 150, no. 6, p. 589–607. 10.1007/s00410-005-0039-2
  • González-Jiménez, J.M., Camprubí, A., Colás, V., Griffin, W.L., Proenza, J.A., O’Reilly, S.Y., Centeno-Garcia, E., Garcia-Casco, A., Belousova, E., and Talavera, C., 2017, The recycling of chromitites in ophiolites from southwestern North America: Lithos, v. 294, p. 53–72. 10.1016/j.lithos.2017.09.020
  • González-Jiménez, J., Proenza, J., Gervilla, F., Melgarejo, J., Blanco-Moreno, J., Ruiz-Sánchez, R., and Griffin, W., 2011, High-Cr and high-Al chromitites from the Sagua de Tánamo district, Mayarí-Cristal ophiolitic massif (eastern Cuba): Constraints on their origin from mineralogy and geochemistry of chromian spinel and platinum-group elements: Lithos, v. 125, no. 1–2, p. 101–121. 10.1016/j.lithos.2011.01.016
  • Guo, G., Mao, W.L., Zhang, R.Y., Liou, J.G., Ernst, W., Yang, J., Liu, X., Xu, X., Zhang, Y., and Wu, B., 2021, Characteristics and implications of podiform-chromite hosted silicate inclusions in the Zedang ophiolite, Southern Tibet: Lithos, v. 396, p. 106218. 10.1016/j.lithos.2021.106218
  • Hall, R., and Sevastjanova, I., 2012, Australian crust in Indonesia: Australian Journal of Earth Sciences, v. 59, no. 6, p. 827–844. 10.1080/08120099.2012.692335
  • Hall, R., and Wilson, M., 2000, Neogene sutures in eastern Indonesia: Journal of Asian Earth Sciences, v. 18, no. 6, p. 781–808. 10.1016/S1367-9120(00)00040-7
  • Hasria, M., Asfar, S., Arisona, O., Restele, A., Ngkoimani, L.O., and Yustika, R., 2021, Characteristics of chromite deposits at North Kabaena District, Bombana Regency, Southeast Sulawesi Province, Indonesia: Journal of Geoscience, Engineering, Environment, and Technology, v. 6, no. 2, p. 94–98. 10.25299/jgeet.2021.6.2.6424
  • Hu, W.-J., Zhou, M.-F., Yudovskaya, M.A., Vikentyev, I.V., Malpas, J., and Zhang, P.-F., 2022, Trace elements in chromite as indicators of the origin of the giant podiform chromite deposit at Kempirsai, Kazakhstan:Economic Geology, Vol. 117, p. 1629–1655
  • Idrus, A., Septiana, S., Zaccarini, F., Garuti, G., and Hasria, H., 2022, Mineralogical, textural and chemical characteristics of ophiolitic chromitite and platinum group minerals from Kabaena Island (Indonesia: Their Petrogenetic Nature and Geodynamic Setting: Minerals, v. 12, no. 5, p. 516.
  • Irvine, T., 1965, Chromian spinel as a petrogenetic indicator: Part 1:Theory: Canadian Journal of Earth Sciences, v. 2, no. 6, p. 648–672.
  • Irvine, T., 1967, Chromian spinel as a petrogenetic indicator: Part 2: Petrologic Applications: Canadian Journal of Earth Sciences, v. 4, no. 1, p. 71–103.
  • Kadarusman, A., Miyashita, S., Maruyama, S., Parkinson, C.D., and Ishikawa, A., 2004, Petrology, geochemistry and paleogeographic reconstruction of the East Sulawesi Ophiolite, Indonesia: Tectonophysics, v. 392, no. 1–4, p. 55–83. 10.1016/j.tecto.2004.04.008
  • Kamenetsky, V.S., Crawford, A.J., and Meffre, S., 2001, Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks: Journal of Petrology, v. 42, no. 4, p. 655–671. 10.1093/petrology/42.4.655
  • Katili, J.A., 1978, Past and present geotectonic position of Sulawesi, Indonesia: Tectonophysics, v. 45, no. 4, p. 289–322. 10.1016/0040-1951(78)90166-X
  • Khedr, M.Z., and Arai, S., 2012, Petrology and geochemistry of prograde deserpentinized peridotites from Happo-O’ne, Japan: Evidence of element mobility during deserpentinization: Journal of Asian Earth Sciences, v. 43, no. 1, p. 150–163. 10.1016/j.jseaes.2011.08.017
  • Khedr, M.Z., and Arai, S., 2017, Peridotite-chromitite complexes in the Eastern Desert of Egypt: Insight into neoproterozoic sub-arc mantle processes: Gondwana Research, v. 52, p. 59–79. 10.1016/j.gr.2017.09.001
  • Lago, B.L., Rabinowicz, M., and Nicolas, A., 1982, Podiform chromite ore bodies: A genetic model: Journal of Petrology, v. 23, no. 1, p. 103–125. 10.1093/petrology/23.1.103
  • Li, C., Naldrett, A.J., and Ripley, E.M., 2007, Controls on the Fo and Ni contents of olivine in sulfide-bearing mafic/ultramafic intrusions: Principles, modeling, and examples from Voisey’s Bay: Earth Science Frontiers, v. 14, no. 5, p. 177–183. 10.1016/S1872-5791(07)60043-8
  • Liu, Y., Hu, Z., Gao, S., Günther, D., Xu, J., Gao, C., and Chen, H., 2008, In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard: Chemical Geology, v. 257, no. 1–2, p. 34–43. 10.1016/j.chemgeo.2008.08.004
  • Liu, X., and O’neill, H.S.C., 2004, Partial melting of spinel lherzolite in the system CaO–MgO–Al2O3–SiO2±K2O at 1.1 GPa: Journal of Petrology, v. 45, no. 7, p. 1339–1368. 10.1093/petrology/egh021
  • Maurel, C., 1984, Étude expérimentale de l’équilibre spinelle chromifère–liquide silicaté basique: SFMC Meet.“Les spinelles”, Lille, oral. comm.
  • Melcher, F., Grum, W., Simon, G., Thalhammer, T.V., and Stumpfl, E.F., 1997, Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan: A study of solid and fluid inclusions in chromite: Journal of Petrology, v. 38, no. 10, p. 1419–1458. 10.1093/petroj/38.10.1419
  • Monnier, C., Girardeau, J., Maury, R.C., and Cotten, J., 1995, Back-arc basin origin for the East Sulawesi ophiolite (eastern Indonesia: Geology, v. 23, no. 9, p. 851–854. 10.1130/0091-7613(1995)023<0851:BABOFT>2.3.CO;2
  • Mubroto, B., Briden, J., McClelland, E., and Hall, R., 1994, Palaeomagnetism of the Balantak ophiolite, Sulawesi: Earth and Planetary Science Letters, v. 125, no. 1–4, p. 193–209. 10.1016/0012-821X(94)90215-1
  • Nayak, R., Pal, D., and Chinnasamy, S.S., 2021, High-Cr chromitites of the Nidar Ophiolite Complex, northern India: Petrogenesis and tectonic implications: Ore Geology Reviews, v. 129, p. 103942. 10.1016/j.oregeorev.2020.103942
  • Nursahan, I., 2005, Inventarisasi dan Evaluasi Mineral Logam di Daerah Kabupaten Bengkayang dan Kabupaten Landak, Provinsi Kalimantan Barat: Subdit Logam:Direktorat Inventarisasi Sumber Daya Mineral
  • Pagé, P., and Barnes, S.-J., 2009, Using trace elements in chromites to constrain the origin of podiform chromitites in the Thetford Mines ophiolite, Québec, Canada: Economic Geology, v. 104, no. 7, p. 997–1018. 10.2113/econgeo.104.7.997
  • Pan, -Q.-Q., Xiao, Y., Su, B.-X., Liu, X., Robinson, P.T., Cui, -M.-M., Wang, J., and Uysal, I., 2022, Fingerprinting stealth metasomatism in ophiolitic peridotites: Lithos, v. 424–425, p. 106755. 10.1016/j.lithos.2022.106755
  • Parkinson, C.D., 1996, The origin and significance of metamorphosed tectonic blocks in mélanges: Evidence from Sulawesi, Indonesia: Terra Nova, v. 8, no. 4, p. 312–323. 10.1111/j.1365-3121.1996.tb00564.x
  • Parkinson, C., 1998, Emplacement of the East Sulawesi Ophiolite: Evidence from subophiolite metamorphic rocks: Journal of Asian Earth Sciences, v. 16, no. 1, p. 13–28. 10.1016/S0743-9547(97)00039-1
  • Pearce, J.A., van der Laan, S.R., Arculus, R.J., Murton, B.J., Ishii, T., Peate, D.W., and Parkinson, I.J., 1992, Boninite and harzburgite from Leg 125 (Bonin-Mariana forearc): A case study of magma genesis during the initial stages of subduction: Proceedings of the ocean drilling program, Scientific Results, v. 125, p. 623–659.
  • Perkins, D., and Anthony, E.Y., 2011, The evolution of spinel lherzolite xenoliths and the nature of the mantle at Kilbourne Hole, New Mexico: Contributions to Mineralogy and Petrology, v. 162, no. 6, p. 1139–1157. 10.1007/s00410-011-0644-1
  • Plechov, P.Y., Shcherbakov, V., and Nekrylov, N., 2018, Extremely magnesian olivine in igneous rocks: Russian Geology and Geophysics, v. 59, no. 12, p. 1702–1717. 10.1016/j.rgg.2018.12.012
  • Pujol-Solà, N., Domínguez-Carretero, D., Proenza, J.A., Haissen, F., Ikenne, M., González-Jiménez, J.M., Colás, V., Maacha, L., and Garcia-Casco, A., 2021, The chromitites of the neoproterozoic Bou Azzer ophiolite (central Anti-Atlas, Morocco) revisited: Ore Geology Reviews, v. 134, p. 104166. 10.1016/j.oregeorev.2021.104166
  • Pujol-Solà, N., Garcia Casco, A., Proenza, J., González-Jiménez, J., Del Campo, A., Colás, V., Sánchez Navas, A., and Roqué-Rosel, J., 2020, Diamond forms during low pressure serpentinisation of oceanic lithosphere.
  • Pujol-Solà, N., Proenza, J.A., Garcia-Casco, A., González-Jiménez, J.M., Andreazini, A., Melgarejo, J.C., and Gervilla, F., 2018, An alternative scenario on the origin of ultra-high pressure (UHP) and super-reduced (SUR) minerals in ophiolitic chromitites: A case study from the mercedita deposit (Eastern Cuba: Minerals, v. 8, no. 10, p. 433. 10.3390/min8100433
  • Putirka, K.D., 2008, Thermometers and barometers for volcanic systems: Reviews in Mineralogy and Geochemistry, v. 69, no. 1, p. 61–120. 10.2138/rmg.2008.69.3
  • Robinson, P.T., Bai, W.-J., Malpas, J., Yang, J.-S., Zhou, M.-F., Fang, Q.-S., Hu, X.-F., Cameron, S., and Staudigel, H., 2004, Ultra-high pressure minerals in the Luobusa Ophiolite, Tibet, and their tectonic implications: Geological Society, London, Special Publications, v. 226, no. 1, p. 247–271. 10.1144/GSL.SP.2004.226.01.14
  • Roeder, P., Gofton, E., and Thornber, C., 2006, Cotectic proportions of olivine and spinel in olivine-tholeiitic basalt and evaluation of pre-eruptive processes: Journal of Petrology, v. 47, no. 5, p. 883–900. 10.1093/petrology/egi099
  • Rollinson, H., 2008, The geochemistry of mantle chromitites from the northern part of the Oman ophiolite: Inferred parental melt compositions:Contributions to Mineralogy and Petrology, v. 156, no. 3, p. 273–288. 10.1007/s00410-008-0284-2
  • Sepidbar, F., Khedr, M.Z., Ghorbani, M.R., Palin, R.M., and Xiao, Y., 2021, Petrogenesis of arc-related peridotite hosted chromitite deposits in Sikhoran-Soghan mantle section, South Iran: Evidence for proto-forearc spreading to boninitic stages: Ore Geology Reviews, v. 136, p. 104256. 10.1016/j.oregeorev.2021.104256
  • Septiana, S., Idrus, A., Zaccarini, F., Garuti, G., and Setijadji, L., 2021, Ore mineralogy of podiform-type chromite deposit in Tedubara area and its vicinity, Kabaena Island, Indonesia, in Proceedings IOP Conference Series: Earth and Environmental Science, NIT Raipur, India, v. 851, no. 1, IOP Publishing, p. 12044.
  • Sideridis, A., Zaccarini, F., Koutsovitis, P., Grammatikopoulos, T., Tsikouras, B., Garuti, G., and Hatzipanagiotou, K., 2021, Chromitites from the Vavdos ophiolite (Chalkidiki, Greece): Petrogenesis and geotectonic settings; constrains from spinel, olivine composition, PGE mineralogy and geochemistry: Ore Geology Reviews, v. 137, p. 104289. 10.1016/j.oregeorev.2021.104289
  • Silver, E.A., McCaffrey, R., Joyodiwiryo, Y., and Stevens, S., 1983, Ophiolite emplacement by collision between the Sula Platform and the Sulawesi island arc: Indonesia: Journal of Geophysical Research: Solid Earth, v. 88, no. B11, p. 9419–9435. 10.1029/JB088iB11p09419
  • Simandjuntak, T., 1992, New data on the age of ophiolite in eastern Sulawesi.
  • Simandjuntak, T., Situmorang, R., and Hadiwijoyo, S., 1987, Geologic map of the Batui Quadrangle, Sulawesi. 1: 250,000: Bandung, Indonesia, Geological Research & Development Centre.
  • Simandjuntak, T., Surono, and Sukido, 1993, Peta Geologi Lembar Kolaka, Sulawesi, Skala 1:250.000: Bandung, Pusat Penelitian dan Pengembangan Geologi.
  • Sobolev, A.V., Hofmann, A.W., Kuzmin, D.V., Yaxley, G.M., Arndt, N.T., Chung, S.-L., Danyushevsky, L.V., Elliott, T., Frey, F.A., and Garcia, M.O., 2007, The amount of recycled crust in sources of mantle-derived melts: Science, v. 316, no. 5823, p. 412–417. 10.1126/science.1138113
  • Spandler, C., O’Neill, H.S.C., and Kamenetsky, V.S., 2007, Survival times of anomalous melt inclusions from element diffusion in olivine and chromite: Nature, v. 447, no. 7142, p. 303–306. 10.1038/nature05759
  • Stowe, C.W., 1987, Evolution of chromium ore fields, New York:Van Nostrund Reinhold, p. 340
  • Su, B.-X., Robinson, P.T., Chen, C., Xiao, Y., Melcher, F., Bai, Y., Gu, X.-Y., Uysal, I., and Lenaz, D., 2020, The occurrence, origin, and fate of water in chromitites in ophiolites:American Mineralogist, v. 105, no. 6, p. 894–903. 10.2138/am-2020-7270
  • Su, B., Zhou, M., Jing, J., Robinson, P.T., Chen, C., Xiao, Y., Liu, X., Shi, R., Lenaz, D., and Hu, Y., 2019, Distinctive melt activity and chromite mineralization in Luobusa and Purang ophiolites, southern Tibet: Constraints from trace element compositions of chromite and olivine: Science Bulletin, v. 64, no. 2, p. 108–121. 10.1016/j.scib.2018.12.018
  • Tamura, A., and Arai, S., 2006, Harzburgite–dunite–orthopyroxenite suite as a record of supra-subduction zone setting for the Oman ophiolite mantle: Lithos, v. 90, no. 1–2, p. 43–56. 10.1016/j.lithos.2005.12.012
  • Uysal, I., Tarkian, M., Sadiklar, M.B., Zaccarini, F., Meisel, T., Garuti, G., and Heidrich, S., 2009, Petrology of Al-and Cr-rich ophiolitic chromitites from the Muğla, SW Turkey: Implications from composition of chromite, solid inclusions of platinum-group mineral, silicate, and base-metal mineral, and Os-isotope geochemistry: Contributions to Mineralogy and Petrology, v. 158, no. 5, p. 659–674. 10.1007/s00410-009-0402-9
  • Walker, D., and Cameron, W., 1983, Boninite primary magmas: Evidence from the Cape Vogel Peninsula, PNG: Contributions to Mineralogy and Petrology, v. 83, no. 1, p. 150–158. 10.1007/BF00373088
  • Wang, X.B., and Bao, P.S., 1987, The genesis of podiform chromite deposits–A case study of the Luobusa chromite deposit, Tibet: Chinese Journal of Geology, v. 22, p. 166–181.
  • Xiao, Y., Teng, F.Z., Su, B.X., Hu, Y., Zhou, M.F., Zhu, B., Shi, R.D., Huang, Q.S., Gong, X.H., and He, Y.S., 2016, Iron and magnesium isotopic constraints on the origin of chemical heterogeneity in podiform chromitite from the Luobusa ophiolite, Tibet: Geochemistry: Geophysics, Geosystems, v. 17, no. 3, p. 940–953. 10.1002/2015GC006223
  • Xiong, F., Yang, J., Robinson, P.T., Xu, X., Liu, Z., Li, Y., Li, J., and Chen, S., 2015, Origin of podiform chromitite, a new model based on the Luobusa ophiolite, Tibet: Gondwana Research, v. 27, no. 2, p. 525–542. 10.1016/j.gr.2014.04.008
  • Yamamoto, S., Komiya, T., Hirose, K., and Maruyama, S., 2009, Coesite and clinopyroxene exsolution lamellae in chromites: In-situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet: Lithos, v. 109, no. 3–4, p. 314–322. 10.1016/j.lithos.2008.05.003
  • Yang, J., Meng, F., Xu, X., Robinson, P.T., Dilek, Y., Makeyev, A.B., Wirth, R., Wiedenbeck, M., and Cliff, J., 2015, Diamonds, native elements and metal alloys from chromitites of the Ray-Iz ophiolite of the Polar Urals: Gondwana Research, v. 27, no. 2, p. 459–485. 10.1016/j.gr.2014.07.004
  • Yao, J., Zhang, G., Wang, S., and Zhao, J., 2021b, Recycling of carbon from the stagnant paleo-Pacific slab beneath Eastern China revealed by olivine geochemistry: Lithos, v. 398-399, p. 106249. 10.1016/j.lithos.2021.106249
  • Yao, J.-H., Zhu, W.-G., Li, C., Zhong, H., Bai, Z.-J., Ripley, E.M., and Li, C., 2018, Petrogenesis and ore genesis of the Lengshuiqing magmatic sulfide deposit in southwest China: Constraints from chalcophile elements (PGE, Se) and Sr-Nd-Os-S isotopes: Economic Geology, v. 113, no. 3, p. 675–698. 10.5382/econgeo.2018.4566
  • Yao, J.-H., Zhu, W.-G., Li, C., Zhong, H., Yu, S., Ripley, E.M., and Bai, Z.-J., 2019, Olivine O isotope and trace element constraints on source variation of picrites in the Emeishan flood basalt province, SW China:Lithos, Vol. 338, p. 87–98
  • Yao, J.-H., Zhu, W.-G., Wang, Y.-J., Zhong, H., and Bai, Z.-J., 2021a, Geochemistry of the Yumen picrites-basalts from the Emeishan large igneous province: Implications for their mantle source, PGE behaviors, and petrogenesis: Lithos, v. 400, p. 106364. 10.1016/j.lithos.2021.106364
  • Zaccarini, F., Garuti, G., Proenza, J.A., Campos, L., Thalhammer, O.A., Aiglsperger, T., and Lewis, J.F., 2011, Chromite and platinum group elements mineralization in the Santa Elena Ultramafic Nappe (Costa Rica): Geodynamic implications: Geologica Acta: an International Earth Science Journal, v. 9, no. 3–4, p. 407–423.
  • Zaccarini, F., Idrus, A., and Garuti, G., 2016, Chromite composition and accessory minerals in chromitites from Sulawesi, Indonesia: Their genetic significance: Minerals, v. 6, no. 2, p. 46. 10.3390/min6020046
  • Zhang, Y., Jin, Z., Griffin, W.L., Wang, C., and Wu, Y., 2017, High-pressure experiments provide insights into the Mantle Transition Zone history of chromitite in Tibetan ophiolites: Earth and Planetary Science Letters, v. 463, p. 151–158. 10.1016/j.epsl.2017.01.036
  • Zhou, M.-F., Robinson, P., and Bai, W., 1994, Formation of podiform chromitites by melt/rock interaction in the upper mantle: Mineralium Deposita, v. 29, no. 1, p. 98–101. 10.1007/BF03326400
  • Zhou, M.-F., Robinson, P., Malpas, J., Aitchison, J., Sun, M., Bai, W.-J., Hu, X.-F., and Yang, J.-S., 2001, Melt/mantle interaction and melt evolution in the Sartohay high-Al chromite deposits of the Dalabute ophiolite (NW China: Journal of Asian Earth Sciences, v. 19, no. 4, p. 517–534. 10.1016/S1367-9120(00)00048-1
  • Zhou, M.-F., Robinson, P.T., Su, B.-X., Gao, J.-F., Li, J.-W., Yang, J.-S., and Malpas, J., 2014, Compositions of chromite:Associated Minerals, and Parental Magmas of Podiform Chromite Deposits: the Role of Slab Contamination of Asthenospheric Melts in Suprasubduction Zone Envrionments: Gondwana Research, v. 26, p. 262–283
  • Zhou, M.-F., Sun, M., Keays, R.R., and Kerrich, R.W., 1998, Controls on platinum-group elemental distributions of podiform chromitites: A case study of high-Cr and high-Al chromitites from Chinese orogenic belts: Geochimica et Cosmochimica Acta, v. 62, no. 4, p. 677–688. 10.1016/S0016-7037(97)00382-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.