218
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Carboniferous back-arc bimodal rocks in West Kunlun during northward subduction of the Paleo-Tethys

, , , , , , , , , , , & show all
Pages 1240-1258 | Received 10 Apr 2023, Accepted 01 Jul 2023, Published online: 06 Jul 2023

References

  • Aigner-Torres, M., Blundy, J., Ulmer, P., and Pettke, T. 2007. Laser Ablation ICPMS study of trace element partitioning between plagioclase and basaltic melts: An experimental approach: Contributions to Mineralogy and Petrology, v. 153, no. 6, p. 647–667. doi:10.1007/s00410-006-0168-2.
  • Annen, C., and Sparks, R.S.J. 2002. Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust: Earth & Planetary Science Letters, v. 203, no. 3–4, p. 937. doi:10.1016/S0012-821X(02)00929-9.
  • Belousova, E., Griffin, W., O’reilly, S.Y., and Fisher, N. 2002. Igneous zircon: Trace element composition as an indicator of source rock type: Contributions to Mineralogy and Petrology, v. 143, no. 5, p. 602–622. doi:10.1007/s00410-002-0364-7.
  • Bian, X., Li, B., Zhang, J., Chen, G., and Kong, W., 2002, Geological features and ore-forming significance of the carboniferous rift in Pulu-Aqiang of Yutian count, Sinjiang: Geology of Shaanxi, v. 20, p. 1–8. in Chinese with English abstract
  • Chen, S., Li, R., Ji, W., Zhao, Z., Meng, Y., and Shi, B., 2007, The deposition characteristics and tectono-paleogeographic environment of Kunlun orogenic belt in late devonian: Geotectonica et Metallogenia, v. 31, p. 44–51.
  • Chen, L., Zheng, Y.-F., and Zhao, Z.-F., 2018, A common crustal component in the sources of bimodal magmatism: Geochemical evidence from Mesozoic volcanics in the Middle-Lower Yangtze Valley: South China, GSA Bulletin, v. 130, 1959–1980 p.
  • Colón, D.P., Bindeman, I.N., Wotzlaw, J.-F., Christiansen, E.H., and Stern, R.A. 2018. Origins and evolution of rhyolitic magmas in the central snake river plain: Insights from coupled high-precision geochronology, oxygen isotope, and hafnium isotope analyses of zircon: Contributions to Mineralogy and Petrology, v. 173, no. 2, p. 11. doi:10.1007/s00410-017-1437-y.
  • Condie, K.C., 2005, High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes?: Lithos, v. 79, no. 3–4, p. 491–504. doi:10.1016/j.lithos.2004.09.014.
  • Cui, J.T., Wang, J.C., Bian, X.W., Zhu, H.P., Luo, Q.Z., Yang, K.J., and Wang, M.C., 2007, Zircon SHRIMP U‒Pb dating of early Paleozoic granite in the Menggubao- Pushou area on the northern side of Kangxiwar: West Kunlun: Geological Bulletin of China, v. 26, p. 710–719.
  • Danyushevsky, L.V., Falloon, T.J., Sobolev, A.V., Crawford, A.J., Carroll, M., and Price, R.C. 1993. The H2O content of basalt glasses from Southwest Pacific back-arc basins: Earth and Planetary Science Letters, v. 117, no. 3–4, p. 347–362. doi:10.1016/0012-821X(93)90089-R.
  • Deng, W., 1989, A preliminary study on the basic-ultrabasic rocks of the Karakoram-Western Kunlun Mts: Journal of Natural Resources, v. 3, p. 204–211. in Chinese with English abstract
  • Dixon, J.E., Dixon, T.H., Bell, D.R., and Malservisi, R. 2004. Lateral variation in upper mantle viscosity: Role of water: Earth and Planetary Science Letters, v. 222, no. 2, p. 451–467. doi:10.1016/j.epsl.2004.03.022.
  • Dong, Y., He, D., Sun, S., Liu, X., Zhou, X., Zhang, F., Yang, Z., Cheng, B., Zhao, G., and Li, J., 2018, Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the central China orogenic system: Earth-Science Reviews, v. 186, p. 231–261. doi:10.1016/j.earscirev.2017.12.006.
  • Dong, J., Song, S., Su, L., Allen, M.B., Li, Y., and Wang, C., 2020, Early Devonian mafic igneous rocks in the East Kunlun Orogen, NW China: Implications for the transition from the Proto- to Paleo-Tethys oceans: Lithos, v. 376-377, p. 105771. doi:10.1016/j.lithos.2020.105771.
  • Dong, Y., Sun, S., Santosh, M., Zhao, J., Sun, J., He, D., Shi, X., Hui, B., Cheng, C., and Zhang, G., 2021, Central China orogenic belt and amalgamation of East Asian continents: Gondwana Research, v. 100, p. 131–194. doi:10.1016/j.gr.2021.03.006.
  • Dong, X., Zhang, Z.-M., Geng, G.-S., Liu, F., Wang, W., and Yu, F., 2010, Devonian magmatism from the southern Lhasa terrane, Tibetan Plateau: Acta Petrologica Sinica, v. 26, p. 2226–2232. in Chinese with English abstract
  • Fitton, J.G., Saunders, A.D., Norry, M.J., Hardarson, B.S., and Taylor, R.N. 1997. Thermal and chemical structure of the Iceland plume: Earth and Planetary Science Letters, v. 153, no. 3–4, p. 197–208. doi:10.1016/S0012-821X(97)00170-2.
  • Frost, B.R., and Frost, C.D. 2008. A geochemical classification for feldspathic igneous rocks: Journal of Petrology, v. 49, no. 11, p. 1955–1969. doi:10.1093/petrology/egn054.
  • Gao, S., Rudnick, R.L., Yuan, H.-L., Liu, X.-M., Liu, Y.-S., Xu, W.-L., Ling, W.-L., Ayers, J., Wang, X.-C., and Wang, Q.-H. 2004. Recycling lower continental crust in the North China craton: Nature, v. 432, no. 7019, p. 892–897. doi:10.1038/nature03162.
  • Gao, X., Xiao, P., Kang, L., Ji, W., and Yang, Z., 2015, Petrogenesis and tectonic implication of the A’qiang Mafic Lavas in the West Kunlun Orogen, NW China: Geotectonica et Metallogenia, v. 39, p. 949–958. in Chinese with English abstract
  • Grove, T.L., Elkins-Tanton, L.T., Parman, S.W., Chatterjee, N., M?ntener, O., and Gaetani, G.A. 2003. Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends: Contributions to Mineralogy and Petrology, v. 145, no. 5, p. 515–533. doi::10.1007/s00410-003-0448-z
  • Hermann, J., and Rubatto, D. 2009. Accessory phase control on the trace element signature of sediment melts in subduction zones: Chemical Geology, v. 265, no. 3–4, p. 512–526. doi:10.1016/j.chemgeo.2009.05.018.
  • Hou, K.J., Li, Y.H., Zou, T.R., Qu, X.M., and Xie, G.Q., 2007, LA-MC-ICP‒MS technique for Hf isotope microanalysis of zircon and its geological applications: Acta Petrologica Sinica, v. 23, p. 2595–2604. in Chinese with English abstract
  • Hu, J., Wang, H., Huang, C., Tong, L., Mu, S., and Qiu, Z., 2016, Geological characteristics and age of the Dahongliutan Fe-ore deposit in the Western Kunlun orogenic belt, Xinjiang, northwestern China: Journal of Asian Earth Sciences, v. 116, p. 1–25. doi:10.1016/j.jseaes.2015.08.014.
  • Ji, W., 2005, The late Paleozoic-early Mesozoic tectonic frame in the western Kunlun–Karakorum area [ Ph.D. thesis]: Beijing, China University of Geosciences, 1–143 p.
  • Jiang, Y.-H., Jia, R.-Y., Liu, Z., Liao, S.-Y., Zhao, P., and Zhou, Q., 2013, Origin of middle Triassic high-K calc-alkaline granitoids and their potassic microgranular enclaves from the western Kunlun orogen, northwest China: A record of the closure of Paleo-Tethys: Lithos, v. 156-159, p. 13–30. doi:10.1016/j.lithos.2012.10.004.
  • Jiang, Y.-H., Liao, S.-Y., Yang, W.-Z., and Shen, W.-Z. 2008. An island arc origin of plagiogranites at Oytag, western Kunlun orogen, northwest China: SHRIMP zircon U–Pb chronology, elemental and Sr–Nd–Hf isotopic geochemistry and Paleozoic tectonic implications: Lithos, v. 106, no. 3–4, p. 323–335. doi:10.1016/j.lithos.2008.08.004.
  • Ji, W., Chen, S., Li, R., He, S., Zhao, Z., and Pan, X., 2018, The origin of Carboniferous-Permian magmatic rocks in oytag area, West Kunlun: Back-arc basin: Acta Petrologica Sinica, v. 34, p. 2393–2409. in Chinese with English abstract
  • Ji, W., Li, R., Chen, S., He, S., Zhao, Z., Bian, X., Zhu, H., Cui, J., and Ren, J., 2011, The discovery of Palaeoproterozoic volcanic rocks in the Bulunkuoler group from the Tianshuihai Massif in Xinjiang of Northwest China and its geological significance: Science China Earth Sciences, v. 54, no. 1, p. 61–72. in Chinese with English abstract doi:10.1007/s11430-010-4043-7.
  • Kang, L., Xiao, P.X., Gao, X.F., Wang, C., Yang, Z.C., and Xi, R.G., 2015, Geochemical characteristics, petrogenesis and tectonic setting of Oceanic plagiogranites belt in the northwestern margin of western Kunlun: Acta Petrologica Sinica, v. 31, p. 2566–2582. in Chinese with English abstract
  • Katz, R.F., Spiegelman, M., and Langmuir, C.H., 2003, A new parameterization of hydrous mantle melting: Geochemistry, Geophysics, Geosystems, v. 4, no. 9. doi:10.1029/2002GC000433
  • Kimura, J.-I., 2017, Modeling chemical geodynamics of subduction zones using the Arc Basalt Simulator version 5: Geosphere, v. 13, p. 992–1025. doi:10.1130/GES01468.1.
  • Kimura, J.-I., and Kawabata, H. 2014. Trace element mass balance in hydrous adiabatic mantle melting: The Hydrous Adiabatic Mantle Melting Simulator version 1 (HAMMS1): Geochemistry, Geophysics, Geosystems, v. 15, no. 6, p. 2467–2493. doi:10.1002/2014GC005333.
  • Labanieh, S., Chauvel, C., Germa, A., and Quidelleur, X. 2012. Martinique: A clear case for sediment melting and slab dehydration as a function of distance to the trench: Journal of Petrology, v. 53, no. 12, p. 2441–2464. doi:10.1093/petrology/egs055.
  • Lee, C.-T.A., Luffi, P., Plank, T., Dalton, H., and Leeman, W.P. 2009. Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas: Earth and Planetary Science Letters, v. 279, no. 1–2, p. 20–33. doi:10.1016/j.epsl.2008.12.020.
  • Liao, S.-Y., Jiang, Y.-H., Jiang, S.-Y., Yang, W.-Z., Zhou, Q., Jin, G.-D., and Zhao, P. 2010. Subducting sediment-derived arc granitoids: Evidence from the Datong pluton and its quenched enclaves in the western Kunlun orogen, northwest China: Mineralogy and Petrology, v. 100, no. 1–2, p. 55–74. doi:10.1007/s00710-010-0122-x.
  • Li, G., Fang, A., Wu, F., Liu, X., Pan, Y., and Wang, S., 2009, Studies on the U‒Pb ages and Hf isotopes of zircons in the Aoyitake plagioclase granite, west Tarim: Acta Petrologica Sinica, v. 25, p. 166–172. in Chinese with English abstract
  • Liu, Z., Jiang, Y.-H., Jia, R.-Y., Zhao, P., and Zhou, Q. 2015. Origin of Late Triassic high-K calc-alkaline granitoids and their potassic microgranular enclaves from the western Tibet Plateau, northwest China: Implications for Paleo-Tethys evolution: Gondwana Research, v. 27, no. 1, p. 326–341. doi:10.1016/j.gr.2013.09.022
  • Liu, Z., Jiang, Y.-H., Jia, R.-Y., Zhao, P., Zhou, Q., Wang, G.-C., and Ni, C.-Y. 2014. Origin of Middle Cambrian and Late Silurian potassic granitoids from the western Kunlun orogen, northwest China: A magmatic response to the Proto-Tethys evolution: Mineralogy and Petrology, v. 108, no. 1, p. 91–110. doi:10.1007/s00710-013-0288-0
  • Liu, X.-Q., Zhang, C.-L., Ye, X.-T., Zou, H., and Hao, X.-S., 2019, Cambrian mafic and granitic intrusions in the Mazar-Tianshuihai terrane, West Kunlun Orogenic Belt: Constraints on the subduction orientation of the Proto-Tethys Ocean: Lithos, v. 350-351, p. 105226. doi:10.1016/j.lithos.2019.105226
  • Li, Y.G., and Wang, S.S., 2015, U‒Pb Dating Study of Baddeleyite by LA-ICP‒MS: Technique and Application: Acta Geologica Sinica, p. 2400–2418. in Chinese with English abstract
  • Li, B., Yao, J., Ji, W., Zhang, J., Yin, Z., Chen, G., Lin, X., Zhang, Q., Kong, W., and Wang, F., 2006, Characteristics and zircon SHRIMP U-Pb ages of the arc magmatic rocks in Mazar, southern Yecheng, West Kunlun Mountains: Geological Bulletin of China, v. 25, p. 124–132. in Chinese with English abstract
  • Ludwig, K., 2003, Isoplot 3.0: A geochronological toolkit for Microsoft excel: Berkeley, CA, Berkeley Geochronology Center, p. 1–70.
  • Mahoney, J.J., Saunders, A.D., Storey, M., and Randriamanantenasoa, A. 2008. Geochemistry of the Volcan de l’ Androy Basalt–Rhyolite Complex, Madagascar Cretaceous Igneous Province: Journal of Petrology, v. 49, no. 6, p. 1069–1096. doi:10.1093/petrology/egn018
  • Mandler, B.E., Donnelly-Nolan, J.M., and Grove, T.L. 2014. Straddling the tholeiitic/calc-alkaline transition: The effects of modest amounts of water on magmatic differentiation at Newberry Volcano, Oregon: Oregon: Contributions to Mineralogy and Petrology, v. 168, no. 4, p. 1066. doi:10.1007/s00410-014-1066-7
  • Mattern, F., and Schneider, W. 2000. Suturing of the Proto- and Paleo-Tethys oceans in the western Kunlun (Xinjiang, China): Journal of Asian Earth Sciences, v. 18, no. 6, p. 637–650. doi:10.1016/S1367-9120(00)00011-0
  • Matte, P., Tapponnier, P., Arnaud, N., Bourjot, L., Avouac, J.P., Vidal, P., Qing, L., Yusheng, P., and Yi, W. 1996. Tectonics of Western Tibet, between the Tarim and the Indus: Earth and Planetary Science Letters, v. 142, no. 3–4, p. 311–330. doi:10.1016/0012-821X(96)00086-6
  • Mckenzie, D., and Bickle, M. 1988. The volume and composition of melt generated by extension of the lithosphere: Journal of Petrology, v. 29, no. 3, p. 625–679. doi:10.1093/petrology/29.3.625
  • Mckenzie, D., and O’nions, R. 1991. Partial melt distributions from inversion of rare earth element concentrations: Journal of Petrology, v. 32, no. 5, p. 1021–1091. doi:10.1093/petrology/32.5.1021
  • Meert, J.G. 2003. A synopsis of events related to the assembly of eastern Gondwana: Tectonophysics, v. 362, no. 1–4, p. 1–40. doi:10.1016/S0040-1951(02)00629-7
  • Metcalfe, I., 2009, Late Palaeozoic and Mesozoic tectonic and palaeogeographical evolution of SE Asia: Geological Society: London, Special Publications, Vol. 315, pp. 7–23.
  • Metcalfe, I., 2021, Multiple Tethyan ocean basins and orogenic belts in Asia: Gondwana Research, v. 100, p. 87–130. doi:10.1016/j.gr.2021.01.012
  • Murphy, J.B., van Staal, C.R., and Collins, W.J., 2011, A comparison of the evolution of arc complexes in Paleozoic interior and peripheral orogens: Speculations on geodynamic correlations: Gondwana Research, v. 19, no. 3, p. 812–827. doi:10.1016/j.gr.2010.11.019
  • Niu, Y.L., and O’Hara, M.J., 2008, Global correlations of ocean ridge basalt chemistry with axial depth: A new perspective: Journal of Petrology, v. 49, no. 4, p. 633–664. doi:10.1093/petrology/egm051
  • Pan, Y.S., 1996, Geological evolution of Karakorum and Kunlun Mountains (in Chinese): Beijing, Seismological Press.
  • Pearce, J., 1982, Trace element characteristics of lavas from destructive plate boundaries, in Thorpe, R.S., ed., Andesites: Orogenic andesites and related rocks: New Jersey, John Wiley and Sons, p. 252–548.
  • Plank, T., 2014, The chemical composition of subducting sediments, in Holland, H.D., and Turekian, K.K., eds., Treatise on Geochemistry: Second, Oxford, Elsevier, p. 607–629. doi:10.1016/B978-0-08-095975-7.00319-3
  • Pullen, A., Kapp, P., Gehrels, G.E., Ding, L., and Zhang, Q., 2011, Metamorphic rocks in central Tibet: Lateral variations and implications for crustal structure: Canadian Mineralogist: Geological Society of America Bulletin, v. 123, no. 3–4, p. 585–600. doi:10.1130/B30154.1
  • Qi, S.-S., 2015, Petrotectonic assemblages and tectonic evolution of the East Kunlun Orogenic Belt in Qinghai province [ Ph.D. thesis]: Biejing, China University of Geosciences, 1–334 p.
  • Rembe, J., Sobel, E.R., Kley, J., Zhou, R., Thiede, R., Chen, J., and Valla, P., 2021, The Carboniferous Arc of the North Pamir:Lithosphere, v. 2021, no. 1, p. 6697858. https://doi.org/10.2113/2021/6697858
  • Ribeiro, J.M., Stern, R.J., Kelley, K.A., Martinez, F., Ishizuka, O., Manton, W.I., and Ohara, Y. 2013. Nature and distribution of slab-derived fluids and mantle sources beneath the Southeast Mariana forearc rift: Geochemistry, Geophysics, Geosystems, v. 14, no. 10, p. 4585–4607. doi:10.1002/ggge.20244
  • Rudnick, R.L., and Gao, S., 2003, Composition of the continental crust, in Holland, H.D., and Turekian, K.K., eds., Treatise on geochemistry: Oxford, Pergamon, p. 1–64.
  • Shervais, J.W. 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas: Earth and Planetary Science Letters, v. 59, no. 1, p. 101–118. doi:10.1016/0012-821X(82)90120-0
  • Sisson, T.W., and Grove, T.L. 1993. Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism: Contributions to Mineralogy and Petrology, v. 113, no. 2, p. 143–166. doi:10.1007/BF00283225
  • Stern, R.J. 2002. Subduction Zones: Reviews of Geophysics, v. 40, no. 4, p. 3–38. 10.1029/2001RG000108
  • Stern, R.J., Kohut, E., Bloomer, S.H., Leybourne, M., Fouch, M., and Vervoort, J. 2006. Subduction factory processes beneath the Guguan cross-chain, Mariana Arc: No role for sediments, are serpentinites important?: Contributions to Mineralogy and Petrology, v. 151, no. 2, p. 202–221. doi:10.1007/s00410-005-0055-2
  • Stolper, E., and Newman, S. 1994. The role of water in the petrogenesis of Mariana trough magmas: Earth and Planetary Science Letters, v. 121, no. 3–4, p. 293–325. doi:10.1016/0012-821X(94)90074-4
  • Stracke, A., Bizimis, M., and Salters, V.J.M., 2003, Recycling oceanic crust: Quantitative constraints: Geochemistry: Geochemistry, Geophysics, Geosystems, v. 4, no. 3. doi:10.1029/2001GC000223
  • Sui, Q.-L., 2021, Genesis of magmatic rocks in Western Kunlun Orogenic Belt and implications on the evolution of Proto-PaleoTethys [ Ph.D. thesis]: University of Chinese Academy of Sciences, 1–161 p.
  • Suneson, N.H., and Lucchitta, I.V.O. 1983. Origin of bimodal volcanism, southern Basin and Range province, west-central Arizona: Geological Society of America Bulletin, v. 94, no. 8, p. 1005–1019. doi:10.1130/0016-7606(1983)94<1005:OOBVSB>2.0.CO;2
  • Sun, S.S., and Mcdonough, W.F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes: Geological Society, London, Special Publications, v. 42, no. 1, p. 313–345. doi:10.1144/GSL.SP.1989.042.01.19
  • Tamura, Y., Ishizuka, O., Stern, R.J., Shukuno, H., Kawabata, H., Embley, R.W., Hirahara, Y., Chang, Q., Kimura, J.-I., Tatsumi, Y., Nunokawa, A., and Bloomer, S.H. 2011. Two primary basalt magma types from Northwest Rota-1 volcano, Mariana arc and its mantle diapir or mantle wedge plume: Journal of Petrology, v. 52, no. 6, p. 1143–1183. doi:10.1093/petrology/egr022
  • Tang, G.-J., Cawood, P.A., Wyman, D.A., Dan, W., Wang, Q., and Yang, Y.-N., 2021, The missing magmatic arc in a long-lived ocean from the Western Kunlun-Pamir Paleo-Tethys Realm:Geophysical Research Letters, v. 48, no. 22, p. e2021GL095192. doi:10.1029/2021GL095192
  • Villiger, S., Ulmer, P., and Müntener, O. 2007. Equilibrium and fractional crystallization experiments at 0·7 GPa: The effect of pressure on phase relations and liquid compositions of tholeiitic magmas: Journal of Petrology, v. 48, no. 1, p. 159–184. doi:10.1093/petrology/egl058
  • Von Raumer, J.F., and Stampfli, G.M. 2008. The birth of the Rheic Ocean — Early Palaeozoic subsidence patterns and subsequent tectonic plate scenarios: Tectonophysics, v. 461, no. 1–4, p. 9–20. doi:10.1016/j.tecto.2008.04.012
  • Wang, J., 2017, Geochronology, Geochemistry and tectonic significance of the Pingchangliang and Dashagou plutons, West Segment of East Kunlun Orogen: Northwest University Xian, China, p. 67 p.
  • Wang, Z. 2004. Tectonic evolution of the western Kunlun orogenic belt, western China: Journal of Asian Earth Sciences, v. 24, no. 2, p. 153–161. doi:10.1016/j.jseaes.2003.10.007
  • Wang, J., Hattori, K., Liu, J., Song, Y., Gao, Y., and Zhang, H., 2017, Shoshonitic- and adakitic magmatism of the Early Paleozoic age in the Western Kunlun orogenic belt, NW China: Implications for the early evolution of the northwestern Tibetan plateau: Lithos, v. 286-287, p. 345–362. doi:10.1016/j.lithos.2017.06.013
  • Wang, C., Liu, L., Wang, Y.-H., He, S.-P., Li, R.-S., Li, M., Yang, W.-Q., Cao, Y.-T., Collins, A.S., Shi, C., and Wu, Z.-N., 2015, Recognition and tectonic implications of an extensive Neoproterozoic volcano-sedimentary rift basin along the southwestern margin of the Tarim Craton: northwestern China, Precambrian Research, Vol. 257, pp. 65–82.
  • Wang, J., Su, Y., Zheng, J., Belousova, E.A., Chen, M., Dai, H., and Zhou, X., 2021, Petrogenesis of early Carboniferous bimodal-type volcanic rocks from the Junggar Basin (NW China) with implications for Phanerozoic crustal growth in Central Asian Orogenic Belt: Gondwana Research, v. 89, p. 220–237. doi:10.1016/j.gr.2020.10.008
  • Wang, C., Wang, Y.-H., Liu, L., He, S.-P., Li, R.-S., Li, M., Yang, W.-Q., Cao, Y.-T., Meert, J.G., and Shi, C., 2014, The Paleoproterozoic magmatic–metamorphic events and cover sediments of the Tiekelik Belt and their tectonic implications for the southern margin of the Tarim Craton: northwestern China, Precambrian Research, Vol. 254, pp. 210–225.
  • Wang, P., Zhao, G., Han, Y., Liu, Q., Yao, J., Yu, S., and Li, J., 2020, Timing of the final closure of the Proto-Tethys: Constraints from provenance of early Paleozoic sedimentary rocks in West: Kunlun, NW China, Gondwana Research, Vol. 84, pp. 151–162.
  • Wang, P., Zhao, G., Liu, Q., Yao, J., and Han, Y., 2022, Evolution of the Paleo-Tethys Ocean in Eastern Kunlun, North Tibetan Plateau: From continental rift-drift to final closure: Lithos, v. 422-423, p. 106717. doi:10.1016/j.lithos.2022.106717
  • Wang, Y.-J., Zhu, W.-G., Huang, H.-Q., Zhang, Z.-W., Hu, P.-C., Wu, C.-Q., Xu, J.-H., and Leng, C.-B., 2022, Revisiting the origin of the Carboniferous Oytag pluton in West Kunlun orogenic belt, northwest China: Lithos, v. 430-431, p. 106877. doi:10.1016/j.lithos.2022.106877
  • Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W., Meier, M., Oberli, F.V., Quadt, A.V., Roddick, J., and Spiegel, W. 1995. Three natural zircon standards for U‐Th‐Pb, Lu‐Hf, trace element and REE analyses: Geostandards and Geoanalytical Research, v. 19, no. 1, p. 1–23. doi:10.1111/j.1751-908X.1995.tb00147.x
  • Winchester, J.A., and Floyd, P.A., 1977, Geochemical discrimination of different magma series and their differentiation products using immobile elements: Chemical Geology, v. 20, p. 325–343. doi:10.1016/0009-2541(77)90057-2
  • Workman, R.K., and Hart, S.R. 2005. Major and trace element composition of the depleted MORB mantle (DMM): Earth and Planetary Science Letters, v. 231, no. 1–2, p. 53–72. doi:10.1016/j.epsl.2004.12.005
  • Wu, F.-Y., Wan, B., Zhao, L., Xiao, W., and Zhu, R., 2020, Tethyan geodynamics: acta Petrologica Sinica, v. 36, no. 6, p. 1627–1674. in Chinese with English abstract. doi:10.18654/1000-0569/2020.06.01.
  • Wu, K., Zhang, L., Jiang, X., Chen, Y., Guo, J., Sun, W., Sui, Q., and Yuan, H., 2021, Continental crust growth during the evolution of accretionary orogens: Insights from the early Paleozoic granitoids in the Western Kunlun orogen: Northwest China, Lithos, v. 398-399, p. 106253.
  • Wu, C., Zuza, A.V., Chen, X., Ding, L., Levy, D.A., Liu, C., Liu, W., Jiang, T., and Stockli, D.F. 2019, Tectonics of the Eastern Kunlun Range: Cenozoic reactivation of a Paleozoic‐early Mesozoic orogen: Tectonics, v. 38.
  • Xia, L., and Li, X., 2019, Basalt geochemistry as a diagnostic indicator of tectonic setting: Gondwana Research, v. 65, p. 43–67. doi:10.1016/j.gr.2018.08.006.
  • Xiao, W., Han, F., Windley, B.F., Yuan, C., Zhou, H., and Li, J., 2003, Multiple accretionary orogenesis and episodic growth of continents: Insights from the Western Kunlun Range, Central Asia: International Geology Review, v. 45, p. 303–328.
  • Xiao, W.J., Windley, B.F., Chen, H.L., Zhang, G.C., and Li, J.L. 2002. Carboniferous-Triassic subduction and accretion in the western Kunlun, China: Implications for the collisional and accretionary tectonics of the northern Tibetan Plateau: Geology, v. 30, no. 4, p. 295–298. doi:10.1130/0091-7613(2002)030<0295:CTSAAI>2.0.CO;2.
  • Xiao, W.J., Windley, B.F., Liu, D.Y., Jian, P., and Yuan, 2005, Accretionary Tectonics of the Western Kunlun Orogen, China: A Paleozoic-Early Mesozoic, long-lived active continental margin with implications for the growth of Southern Eurasia: The Journal of Geology, v. 113, p. 687–705. doi:10.1086/449326.
  • Xu, X., Liu, C., Liu, W., Ye, B., Zhao, Z., Ma, B., and Liu, Y. 2020. Geochronology and geochemistry of the late Devonian–Early Carboniferous volcanic rocks in Aksu River area, western end of the East Kunlun Orogen: Geological Journal, v. 55, no. 4, p. 2881–2901. doi:10.1002/gj.3554.
  • Yin, J., Xiao, W., Sun, M., Chen, W., Yuan, C., Zhang, Y., Wang, T., Du, Q., Wang, X., and Xia, X. 2020. Petrogenesis of early Cambrian granitoids in the western Kunlun orogenic belt, Northwest Tibet: Insight into early stage subduction of the Proto-Tethys Ocean: GSA Bulletin, v. 132, no. 9–10, p. 2221–2240. doi:10.1130/B35408.1.
  • Yuan, C. 1999, Magmatism and tectonic evolution of the West Kunlun Mountains [ PhD dissertation], University of Hong Kong.
  • Yuan, C., Sun, M., Zhou, M.-F., Zhou, H., Xiao, W., and Li, J. 2003. Absence of Archean basement in the South Kunlun Block: Nd-Sr-O isotopic evidence from granitoids: Island Arc, v. 12, no. 1, p. 13–21. doi:10.1046/j.1440-1738.2003.00376.x.
  • Yuan, C., Sun, M., Zhou, M.-F., Zhou, H., Xiao, W.-J., and Li, J.-L. 2002. Tectonic evolution of the West Kunlun: Geochronologic and geochemical constraints from Kudi Granitoids: International Geology Review, v. 44, no. 7, p. 653–669. doi:10.2747/0020-6814.44.7.653.
  • Yun, J., Gao, X.-F., Xiao, P.-X., Kang, L., and Li, P., 2015, Geochemical characteristics of the lower Carboniferous volcanic rocks of the Wuluate formation in the Western Kunlun Mountains and their geological significance: Geology in China, v. 42, p. 587–600. in Chinese with English abstract
  • Zhang, T.-Y., Fan, J.-J., Li, C., Xie, C.-M., Wang, M., Wu, Y.-W., Xu, M.-J., Xu, W., Liu, J.-H., and Luo, A.-B. 2018. Early Carboniferous ophiolite in central Qiangtang, northern Tibet: Record of an oceanic back-arc system in the Palaeo-Tethys Ocean: International Geology Review, v. 60, no. 4, p. 449–463. doi:10.1080/00206814.2017.1342569.
  • Zhang, L., Long, X., Zhang, R., Dong, Y., Yuan, C., Xiao, W., and Yujing, W., 2017, Source characteristics and provenance of metasedimentary rocks from the Kangxiwa Group in the Western Kunlun Orogenic Belt, NW China: Implications for tectonic setting and crustal growth: Gondwana Research, v. 46, p. 43–56. doi:10.1016/j.gr.2017.02.014.
  • Zhang, Z., Yang, X., Zhang, L., Wu, C., Luo, T., Zhu, W., Xu, J., Hu, P., Li, X., and Jin, Z., 2021, Sedimentation and mineralization of the Late Paleozoic extensional basin in the western Kunlun Mountains: China, Solid Earth Sciences, v. 6, p. 142–177.
  • Zhang, C.-L., Zou, H.-B., Li, H.-K., and Wang, H.-Y. 2013. Tectonic framework and evolution of the Tarim Block in NW China: Gondwana Research, v. 23, no. 4, p. 1306–1315. doi:10.1016/j.gr.2012.05.009.
  • Zhang, C.-L., Zou, H.-B., Ye, X.-T., and Chen, X.-Y., 2018a, Tectonic evolution of the NE section of the Pamir Plateau: New evidence from field observations and zircon U-Pb geochronology: Tectonophysics, v. 723, p. 27–40. doi:10.1016/j.tecto.2017.11.036.
  • Zhang, C.-L., Zou, H.-B., Ye, X.-T., and Chen, X.-Y., 2018b, Timing of subduction initiation in the Proto-Tethys Ocean: Evidence from the Cambrian gabbros from the NE Pamir Plateau: Lithos, v. 314-315, p. 40–51. doi:10.1016/j.lithos.2018.05.021.
  • Zhang, C.-L., Zou, H.-B., Ye, X.-T., and Chen, X.-Y. 2019. Tectonic evolution of the West Kunlun Orogenic Belt along the northern margin of the Tibetan Plateau: Implications for the assembly of the Tarim terrane to Gondwana: Geoscience Frontiers, v. 10, no. 3, p. 973–988. doi:10.1016/j.gsf.2018.05.006.
  • Zhao, G., Wang, Y., Huang, B., Dong, Y., Li, S., Zhang, G., and Yu, S., 2018, Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea: Earth-Science Reviews, v. 186, p. 262–286. doi:10.1016/j.earscirev.2018.10.003.
  • Zhu, T., Wang, H., Zhao, Y., Xu, X., and Li, Z. 2020. Paleozoic diorites from the southwestern Dunhuang terrane, NW China: Constraints on tectonic evolution of southernmost CAOB: Geological Journal, v. 55, no. 1, p. 893–911. doi:10.1002/gj.3447.
  • Zhu, D.-C., Zhao, Z.-D., Niu, Y., Dilek, Y., Hou, Z.-Q., and Mo, X.-X. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau: Gondwana Research, v. 23, no. 4, p. 1429–1454. doi:10.1016/j.gr.2012.02.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.