240
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Apatite geochemical composition of Mesozoic granitoids in the eastern Jiangnan Orogen, S. China: insights into petrogenesis and intrinsic magmatic variables

&
Pages 2621-2643 | Received 15 Aug 2023, Accepted 02 Dec 2023, Published online: 07 Dec 2023

References

  • Anderson, I.C., Frost, C.D., and Frost, B.R., 2003, Petrogenesis of the Red Mountain pluton, Laramie anorthosite complex, Wyoming: Implications for the origin of A-type granite: Precambrian Research, v. 124, no. 2–4, p. 243–267. 10.1016/S0301-9268(03)00088-3.
  • Arndt, N., 2013, Formation and evolution of the continental crust: Geochemical Perspectives, v. 2, no. 3, p. 405–533. 10.7185/geochempersp.2.3.
  • Bea, F., and Montero, P., 1999, Behavior of accessory phases and redistribution of Zr, REE, Y, th, and U during metamorphism and partial melting of metapelites in the lower crust: An example from the kinzigite formation of Ivrea-Verbano, NW Italy: Geochimica et Cosmochimica Acta, v. 63, no. 7–8, p. 1133–1153. 10.1016/S0016-7037(98)00292-0.
  • Belousova, E.A., Griffin, W.L., O’Reilly, S.Y., and Fisher, N.I., 2002, Apatite as an indicator mineral for mineral exploration: Trace-element compositions and their relationship to host rock type: Journal of Geochemical Exploration, v. 76, no. 1, p. 45–69. 10.1016/S0375-6742(02)00204-2.
  • Belousova, E A., Walters, S., Griffin, W L, and O'Reilly, S Y. (2001), Trace‐element signatures of apatites in granitoids from the Mt Isa Inlier, northwestern Queensland. Australian Journal of Earth Sciences, v. 48, no. 4, p. 603–619. 10.1046/j.1440-0952.2001.00879.x
  • Bonin, B., 2007, A-type granites and related rocks: Evolution of a concept, problems and prospects: Lithos, v. 97, no. 1–2, p. 1–29. 10.1016/j.lithos.2006.12.007.
  • Boynton, W.V., 1984, Geochemistry of the rare earth elements: Meteorite studies, in Henderson, P.ed., Rare earth element geochemistry: New York: Elservier, p. 63–114.
  • Bromiley, G.D., 2021, Do concentrations of Mn, Eu and Ce in apatite reliably record oxygen fugacity in magmas: Lithos, v. 384–385, p. 105900. 10.1016/j.lithos.2020.105900.
  • Brounce, M., Boyce, J., McCubbin, F.M., Humphreys, J., Reppart, J., Stolper, E., and Eiler, J., 2019, The oxidation state of sulfur in lunar apatite: American Mineralogist, v. 104, no. 2, p. 307–312. 10.2138/am-2019-6804.
  • Bruand, E., Fowler, M., Storey, C., Laurent, O., Antoine, C., Guitreau, M., Heilimo, E., and Nebel, O., 2020, Accessory minerals constraints on crustal evolution: Elemental fingerprints for magma discrimination: Geochemical Perspectives Letters, v. 13, p. 7–12. 10.7185/geochemlet.2006.
  • Bruand, E., Storey, C., and Fowler, M., 2014, Accessory mineral chemistry of high ba–Sr granites from Northern Scotland: Constraints on petrogenesis and records of whole-rock signature: Journal of Petrology, v. 55, no. 8, p. 1619–1651. 10.1093/petrology/egu037.
  • Burnham, A.D., and Berry, A.J., 2012, An experimental study of trace element partitioning between zircon and melt as a function of oxygen fugacity: Geochimica et Cosmochimica Acta, v. 95, p. 196–212. 10.1016/j.gca.2012.07.034.
  • Candela, P.A., and Bouton, S.L., 1990, The influence of oxygen fugacity on tungsten and molybdenum partitioning between silicate melts and ilmenite: Economic: Economic Geology, v. 85, no. 3, p. 633–640. 10.2113/gsecongeo.85.3.633.
  • Chelle-Michou, C, and Chiaradia, M., 2017. Amphibole and apatite insights into the evolution and mass balance of Cl and S in magmas associated with porphyry copper deposits. Contrib Mineral Petrol, v. 172, p. 11–12, 10.1007/s00410-017-1417-2
  • Chen, D.D., 2019, Characteristics of rare metals content in Fuling rock mass in southern Anhui Province and its indication to mineralization of rare metal granite: World Nonferrous Metal, v. 5, p. 233–235. in Chinese with English abstract.
  • Chen, L., Zheng, Y.F., and Zhao, Z.F., 2020, Origin of arc-like magmatism at fossil convergent plate boundaries: Geochemical insights from Mesozoic igneous rocks in the middle to lower Yangtze: Valley, South China, Earth-Science Reviews, Vol. 211, 103416 p.
  • Cherniak, D.J., 2000, Rare earth element diffusion in apatite: Geochimica et Cosmochimica Acta, v. 64, no. 22, p. 3871–3885. 10.1016/S0016-7037(00)00467-1.
  • Cherniak, D.J., 2005, Uranium and manganese diffusion in apatite: Chemical Geology, v. 219, no. 1–4, p. 297–308. 10.1016/j.chemgeo.2005.02.014.
  • Cherniak, D.J., and Ryerson, F.J., 1993, A study of strontium diffusion in apatite using Rutherford backscattering spectroscopy and ion implantation: Geochimica et Cosmochimica Acta, v. 57, no. 19, p. 4653–4662. 10.1016/0016-7037(93)90190-8.
  • Chu, M.F., Wang, K.L., Griffin, W.L., Chung, S.L., O’Reilly, S.Y., Pearson, N.J., and Iizuka, Y., 2009, Apatite composition: tracing petrogenetic processes in Transhimalayan granitoids: Journal of Petrology, v. 50, p. 1829–1855. 10.1093/petrology/egp054.
  • Ding, T., Ma, D.S., Lu, J.J., and Zhang, R.Q., 2015, Apatite in granitoids related to polymetallic mineral deposits in southeastern Hunan Province, Shi-Hang zone, China: Implications for petrogenesis and metallogenesis: Ore Geology Reviews, v. 69, p. 104–117. 10.1016/j.oregeorev.2015.02.004.
  • Gao, R., 2016, ICP-MS brace elemental Analyzed Method: Applications for the Mesozoic magmatic rocks in Southern Anhui Province: Master’s dissertation]: Hefei: Hefei University of Technology.
  • Giordano, D., Romano, C., Dingwell, D.B., Poe, B., and Behrens, H., 2004, The combined effects of water and fluorine on the viscosity of silicic magmas: Geochimica et cosmochimica acta, v. 68, no. 24, p. 5159–5168. 10.1016/j.gca.2004.08.012.
  • Girardi, J.D., Patchett, P.J., Ducea, M.N., Gehrels, G.E., Cecil, M.R., Rusmore, M.E., Woodsworth, G.J., Pearson, D.M., Manthei, C., and Wetmore, P., 2012, Elemental and isotopic evidence for granitoid genesis from deep-seated sources in the Coast Mountains batholith: British Columbia: Journal of Petrology, v. 53, no. 7, p. 1505–1536. 10.1093/petrology/egs024.
  • Gudelius, D., Zeh, A., Almeev, R.R., Wilson, A.H., Fischer, L.A., and Schmitt, A.K., 2020, Zircon melt inclusions in mafic and felsic rocks of the bushveld complex-constraints for zircon crystallization temperatures and partition coefficients: Geochimica et Cosmochimica Acta, v. 289, p. 158–181. 10.1016/j.gca.2020.08.027.
  • Haapala, I., Frindt, S., and Kandara, J., 2007, Cretaceous gross spitzkoppe and Klein spitzkoppe stocks in Namibia: Topaz-bearing A-type granites related to continental rifting and mantle plume: Lithos, v. 97, no. 1–2, p. 174–192. 10.1016/j.lithos.2006.12.002.
  • Harlov, D.E., 2015, Apatite: A fingerprint for metasomatic processes: Elements, v. 11, no. 3, p. 171–176. 10.2113/gselements.11.3.171.
  • Harlov, D. E, and Förster, H., 2003, Fluid-induced nucleation of (Y+REE)-phosphate minerals within apatite: Nature and experiment. Part II. Fluorapatite. American Mineralogist, v. 88, no. 8–9, p. 1209–1229. 10.2138/am-2003-8-905
  • Hsieh, P.S., Chen, C.H., Yang, H.J., and Lee, C.Y., 2008, Petrogenesis of the Nanling Mountains granites from South China: Constraints from systematic apatite geochemistry and whole-rock geochemical and Sr–Nd isotope compositions: Journal of Asian Earth Sciences, v. 33, no. 5–6, p. 428–451. 10.1016/j.jseaes.2008.02.002.
  • Hughes, J.M., and Rakovan, J.F., 2015, Structurally robust, chemically diverse; apatite and apatite supergroup minerals: Elements, v. 11, no. 3, p. 165–170. 10.2113/gselements.11.3.165.
  • Jiang, X.Y., Li, H., Ding, X., Wu, K., Guo, J., Liu, J.Q., and Sun, W.D., 2018, Formation of A-type granites in the lower Yangtze river belt: A perspective from apatite geochemistry: Lithos, v. 304, p. 125–134. 10.1016/j.lithos.2018.02.005.
  • Jiang, X.Y., Ling, M.X., Wu, K., Zhang, Z.K., Sun, W.D., Sui, Q.L., and Xia, X.P., 2018, Insights into the origin of coexisting A1-and A2-type granites: Implications from zircon Hf-O isotopes of the huayuangong intrusion in the lower Yangtze river belt: eastern China, Lithos, Vol. 318, 230–243 p.
  • Jiang, X.Y., Luo, J.C., Guo, J., Wu, K., Zhang, Z.K., Sun, W.D., and Xia, X.P., 2018, Geochemistry of I- and A-type granites of the Qingyang-Jiuhuashan complex, eastern China: Insights into early cretaceous multistage magmatism: Lithos, v. 316–317, p. 278–294. 10.1016/j.lithos.2018.07.025.
  • Jiang, X.Y., Wu, K., Luo, J.C., Zhang, L.P., Sun, W.D., and Xia, X.P., 2020, An A1-type granite that borders A2-type: Insights from the geochemical characteristics of the Zongyang A-type granite in the lower Yangtze river belt, China: International Geology Review, v. 62, no. 17, p. 2203–2220. 10.1080/00206814.2019.1689534.
  • Jochum, K.P., Nohl, U., Herwig, K., Lammel, E., Stoll, B., and Hofmann, A.W., 2005, GeoReM: A new geochemical database for reference materials and isotopic standards: Geostandards and Geoanalytical Research, v. 29, no. 3, p. 333–338. 10.1111/j.1751-908X.2005.tb00904.x.
  • Jugo, P.J., 2009, Sulfur content at sulfide saturation in oxidized magmas: Geology, v. 37, no. 5, p. 415–418. 10.1130/G25527A.1.
  • Jung, S., Hoernes, S., Masberg, P., and Hoffer, E., 1999, The petrogenesis of some migmatites and granites (central Damara Orogen, Namibia): Evidence for disequilibrium melting, wall-rock contamination and crystal fractionation: Journal of Petrology, v. 40, no. 8, p. 1241–1269. 10.1093/petroj/40.8.1241.
  • Kemp, A.I.S., Hawkesworth, C.J., Paterson, B.A., and Kinny, P.D., 2006, Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon: Nature, v. 439, no. 7076, p. 580–583. 10.1038/nature04505.
  • Keppler, H., 1993, Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks: Contributions to Mineralogy and Petrology, v. 114, no. 4, p. 479–488. 10.1007/BF00321752.
  • Kieffer, M. A., Dare, S. A. S, and Namur, O., 2023, The use of trace elements in apatite to trace differentiation of a ferrobasaltic melt in the Sept-Iles Intrusive Suite, Quebec, Canada: Implications for provenance discrimination. Geochimica et Cosmochimica Acta, v. 342, p. 169–197. 10.1016/j.gca.2022.12.016
  • King, P.L., White, A.J.R., Chappell, B.W., and Allen, C.M., 1997, Characterization and origin of aluminous A-type granites from the Lachlan fold belt: Southeastern Australia: Journal of Petrology, v. 38, no. 3, p. 371–391. 10.1093/petroj/38.3.371.
  • Klimm, K., Blundy, J.D., and Green, T.H., 2008, Trace element partitioning and accessory phase saturation during H2O-Saturated melting of basalt with Implications for subduction zone Chemical fluxes: Journal of Petrology, v. 49, no. 3, p. 523–553. 10.1093/petrology/egn001.
  • Konecke, B.A., Fiege, A., Simon, A.C., Linsler, S., and Holtz, F., 2019, An experimental calibration of a sulfur-in-apatite oxybarometer for mafic systems: Geochimica et Cosmochimica Acta, v. 265, p. 242–258. 10.1016/j.gca.2019.08.044.
  • Kong, Z.G., 2020, Weakly fractionated oxidized I-type granitoids related tungsten polymetallic mineralization-a case study of zhuxiling deposit, southern Anhui Province, China: Doctor’s dissertation: Xi’an, Chang’, an University.
  • Krneta, S., Ciobanu, C.L., Cook, N.J., Ehrig, K., and Kontonikas-Charos, A., 2016, Apatite at Olympic Dam, South Australia: A petrogenetic tool: Lithos, v. 262, p. 470–485. 10.1016/j.lithos.2016.07.033.
  • Kwak, T.A.P., and White, A.J.R., 1982, Contrasting W-Mo-Cu and W-Sn-F skarn types and related granitoids: Mining Geology, v. 32, no. 174, p. 339–351.
  • Laurent, O., Zeh, A., Gerdes, A., Villaros, A., Gros, K., and Slaby, E., 2017, How do granitoid magmas mix with each other? Insights from textures, trace element and Sr–Nd isotopic composition of apatite and titanite from the matok pluton (South Africa): Contributions to Mineralogy and Petrology, v. 172, no. 9, p. 1–22. 10.1007/s00410-017-1398-1.
  • Lee, C.T., and Morton, D.M., 2015, High silica granites: Terminal porosity and crystal settling in shallow magma chambers: Earth and Planetary Science Letters, v. 409, p. 23–31. 10.1016/j.epsl.2014.10.040.
  • Le Maitre, R.W., Streckeisen, A., Zanettin, B., Le Bas, M.J., Bonin, B., Bateman, P., Bellieni, G., Dudek, A., Efremova, S., Keller, J., Lameyre, J, Sabine, P.A., Schmid, R., Sorensen, H., Wooley, A.R, 2005, Igneous rocks: Aclassification and glossary of terms: Recommendations of the international union of geological sciences subcommission on the systematics of igneous rocks Le Maitre, R.W. : New York: Cambridge University Press 237
  • Li, W., and Costa, F., 2020, A thermodynamic model for F-Cl-OH partitioning between silicate melts and apatite including non-ideal mixing with application to constraining melt volatile budgets: Geochimica et Cosmochimica Acta, v. 269, p. 203–222. 10.1016/j.gca.2019.10.035.
  • Li, H., and Hermann, J., 2017, Chlorine and fluorine partitioning between apatite and sediment melt at 2.5 GPa, 800 °C: A new experimentally derived thermodynamic model: American Mineralogist, v. 102, no. 3, p. 580–594. 10.2138/am-2017-5891.
  • Liu, Y.S., Hu, Z.C., Gao, S., Günther, D., Xu, J., Gao, C.G., and Chen, H.H., 2008, In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard: Chemical Geology, v. 257, no. 1–2, p. 34–43. 10.1016/j.chemgeo.2008.08.004.
  • Li, C.D., Zhang, Q., Miao, L.C., and Meng, X.F., 2004, Mesozoic high Sr, low Y and low Sr, low Y types granitoids in the northern Hebei Province: Geochemistry and petrogenesis and its relation to mineralization of gold deposits: Acta Petrologica Sinica, v. 20, no. 2, p. 269–284.
  • Malusa, M.G., Wang, J., Garzanti, E., Liu, Z.C., Villa, I.M., and Wittmann, H., 2017, Trace-element and Nd-isotope systematics in detrital apatite of the Po river catchment: Implications for provenance discrimination and the lag-time approach to detrital thermochronology: Lithos, v. 290–291, p. 48–59. 10.1016/j.lithos.2017.08.006.
  • Maniar, P.D., and Piccoli, P.M., 1989, Tectonic discrimination of granitoids: Geological Society of America Bulletin, v. 101, no. 5, p. 635–643. 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2.
  • Mao, M., Rukhlov, A.S., Rowins, S.M., Spence, J., and Coogan, L.A., 2016, Apatite trace element compositions: A robust new tool for mineral exploration: Economic Geology, v. 111, no. 5, p. 1187–1222. 10.2113/econgeo.111.5.1187.
  • McCubbin, F.M., Kaaden, K.E.V., Tartèse, R., Boyce, J.W., Mikhail, S., Whitson, E.S., Bell, A.S., Anand, M., Franchi, I.A., Wang, J., and Hauri, E.H., 2015, Experimental investigation of F, Cl, and OH partitioning between apatite and Fe-rich basaltic melt at 1.0–1.2 GPa and 950–1000 °C: American Mineralogist, v. 100, no. 8–9, p. 1790–1802. 10.2138/am-2015-5233.
  • Meng, X., Kleinsasser, J.M., Richards, J.P., Tapster, S.R., Jugo, P.J., Simon, A.C., Kontak, D.J., Robb, L., Bybee, G.M., Marsh, J.H., and Stern, R.A., 2021, Oxidized sulfur-rich arc magmas formed porphyry Cu deposits by 1.88 Ga: Nature Communications, v. 12, no. 1, p. 2189. 28. 10.1038/s41467-021-22349-z.
  • Miles, A.J., Graham, C.M., Hawkesworth, C.J., Gillespie, M.R., and Hinton, R.W., 2013, Evidence for distinct stages of magma history recorded by the compositions of accessory apatite and zircon: Contrib: Contributions to Mineralogy and Petrology, v. 166, no. 1, p. 1–19. 10.1007/s00410-013-0862-9.
  • Miles, A.J., Graham, C.M., Hawkesworth, C.J., Gillespie, M.R., Hinton, R.W., and Bromiley, G.D., 2014, Apatite: a new redox proxy for silicic magmas: Geochimica et Cosmochimica Acta, v. 132, p. 101–119. 10.1016/j.gca.2014.01.040.
  • Mungall, J.E., 2002, Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits: Geology, v. 30, no. 10, p. 915–918. 10.1130/0091-7613(2002)030<0915:RTMSMA>2.0.CO;2.
  • Murray, J.R., and Oreskes, N., 1997, Uses and limitations of cathodoluminescence in the study of apatite paragenesis: Economic Geology, v. 92, no. 3, p. 368–376. 10.2113/gsecongeo.92.3.368.
  • Nagasawa, H., 1970, Rare earth concentrations in zircons and apatites and their host dacites and granites: Earth and Planetary Science Letters, v. 9, no. 4, p. 359–364. 10.1016/0012-821X(70)90136-6.
  • Nash, W.P., and Crecraft, H.R., 1985, Partition coefficients for trace elements in silicic magmas: Geochimica et Cosmochimica Acta, v. 49, no. 11, p. 2309–2322. 10.1016/0016-7037(85)90231-5.
  • Nathwani, C.L., Loader, M.A., Wilkinson, J.J., Buret, Y., Sievwright, R.H., and Hollings, P., 2020, Multi-stage arc magma evolution recorded by apatite in volcanic rocks: Geology, v. 48, no. 4, p. 323–327. 10.1130/G46998.1.
  • O’Sullivan, G., Chew, D., Kenny, G., Henrichs, I., and Mulligan, D., 2020, The trace element composition of apatite and its application to detrital provenance studies: Earth-Science: Review, v. 201, p. 103044. 10.1016/j.earscirev.2019.103044.
  • Pan, Y., and Fleet, M.E., 2002, Compositions of the apatite–group minerals: Substitution mechanisms and controlling factors: Reviews in Mineralogy and Geochemistry, v. 48, no. 1, p. 13–49. 10.2138/rmg.2002.48.2.
  • Parat, F., Holtz, F., and Klügel, A., 2011, S-rich apatite-hosted glass inclusions in xenoliths from La Palma: Constraints on the volatile partitioning in evolved alkaline magmas: Contributions to Mineralogy & Petrology Beitrage zur Mineralogie Und Petrologie, v. 162, no. 3, p. 463–478. 10.1007/s00410-011-0606-7.
  • Peng, G., Luhr, J.F., and McGee, J.J., 1997, Factors controlling sulfur concentrations in volcanic apatite: American Mineralogist, v. 82, no. 11–12, p. 1210–1224. 10.2138/am-1997-11-1217.
  • Piccoli, P., and Candela, P., 1994, Apatite in felsic rocks: A model for the estimation of initial halogen concentrations in the Bishop Tuff (Long Valley) and Tuolumne intrusive suite (Sierra Nevada Batholith) magmas: American Journal of Science, v. 294, no. 1, p. 92–135. 10.2475/ajs.294.1.92.
  • Prowatke, S, and Klemme, S., 2006, Trace element partitioning between apatite and silicate melts. Geochimica et Cosmochimica Acta, v. 70, no. 17, p. 4513–4527. 10.1016/j.gca.2006.06.162
  • Pyle, J.M., Spear, F.S., and Wark, D.A., 2002, Electron microprobe analysis of REE in apatite, monazite and xenotime: Protocols and pitfalls: Reviews in Mineralogy and Geochemistry, v. 48, no. 1, p. 337–362. 10.2138/rmg.2002.48.8.
  • Qi, H., Yang, X., Lu, S., Lee, I., and Kim, Y., 2022, Petrogenetic and metallogenic implications of the late Mesozoic intrusive rocks in the Xuancheng ore district, eastern China: Insight from in situ analysis of apatite: Geosciences Journal, v. 26, no. 1, p. 113–128. 10.1007/s12303-021-0019-1.
  • Quan, Y., Yang, D., Yan, X., Wang, A., Hao, L., Yang, H., Wang, F., and Xu, W., 2023, Petrogenesis of Mesozoic granitoids in the northeastern North China craton: Constraints from apatite trace elements and in-situ Nd isotopic data: Lithos, v. 450, p. 107190. 10.1016/j.lithos.2023.107190.
  • Qu, P., Yang, W., Niu, H., Li, N., and Wu, D., 2022, Apatite fingerprints on the magmatic-hydrothermal evolution of the Daheishan giant porphyry Mo deposit: NE China: GSA Bulletin, v. 134, no. 7–8, p. 1863–1876. 10.1130/B36093.1.
  • Richards, J P., 2003. Tectono-Magmatic Precursors for Porphyry Cu-(Mo-Au) Deposit Formation. Economic Geology, v. 98, no. 8, p. 1515–1533. 10.2113/98.8.1515
  • Sadove, G., Konecke, B. A., Fiege, A, and Simon, A. C., 2019, Structurally bound S2−, S1−, S4+, S6+ in terrestrial apatite: The redox evolution of hydrothermal fluids at the Phillips mine, New York, USA. Ore Geology Reviews, v. 107, p. 1084–1096. 10.1016/j.oregeorev.2019.03.033
  • Sha, L.K., and Chappell, B.W., 1999, Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis: Geochimica et cosmochimica acta, v. 63, no. 22, p. 3861–3881. 10.1016/S0016-7037(99)00210-0.
  • Shui, T., Xu, B.T., Liang, R.H., and Qiu, Y.S., 1986 Jiangshan-Shaoxing Archicontinental Jointing Zone , Chinese Science Bulletin, v. 6, p. 444–448. in Chinese.
  • Shu, L.S., Shi, Y.S., Guo, L.Z., Charvet, J., and Sun, Y., 1995, Plate-body tectonics and collision orogeny in the middle of Jiangnan: Nanjing University Publishing House, Nanjing.
  • Sillitoe, R H., 2010, Porphyry Copper Systems. Economic Geology, v. 105, no. 1, p. 3–41. 10.2113/gsecongeo.105.1.3
  • Sisson, T., Ratajeski, K., Hankins, W., and Glazner, A., 2005, Voluminous granitic magmas from common basaltic sources: Contributions to Mineralogy and Petrology, v. 148, no. 6, p. 635–661. 10.1007/s00410-004-0632-9.
  • Słaby, E., Martin, H., Hamada, M., Śmigielski, M., Domonik, A., Götze, J., Hoefs, J., Hałas, S., Simon, K., Devidal, J.L., Moyen, J.F., and Jayananda, M., 2012, Evidence in Archaean alkali feldspar megacrysts for high-temperature interaction with mantle fluids: Journal of Petrology, v. 53, no. 1, p. 67–98. 10.1093/petrology/egr056.
  • Song, S., Mao, J., Romer, R.L., and Jian, W., 2023, The petrogenesis of the Yangchuling porphyry W-Mo deposit, South China, an oxidized tungsten systems: Contributions to Mineralogy and Petrology, v. 178, no. 7, p. 39. 10.1007/s00410-023-02023-x.
  • Song, S., Mao, J., Xie, G., Lehmann, B., Jian, W., and Wang, X., 2021, The world-class mid-Mesozoic Jiangnan tungsten belt, South China: Coeval large reduced and small oxidized tungsten systems controlled by different magmatic petrogenesis: Ore Geology Reviews, v. 139, p. 104543. 10.1016/j.oregeorev.2021.104543.
  • Spear, F.S., and Pyle, J.M., 2002, Apatite, Monazite, and Xenotime in Metamorphic Rocks: Reviews in Mineralogy and Geochemistry, v. 48, no. 1, p. 293–335. 10.2138/rmg.2002.48.7.
  • Stepanov, A.S., Hermann, J., Rubatto, D., and Rapp, R.P., 2012, Experimental study of monazite/melt partitioning with implications for the REE, th and U geochemistry of crustal rocks: Chemical Geology, v. 300–301, no. 2, p. 200–220. 10.1016/j.chemgeo.2012.01.007.
  • Stokes, T.N., Bromiley, G.D., Potts, N.J., Saunders, K.E., Miles, A.J., and EIMF, 2019, The effect of melt composition and oxygen fugacity on manganese partitioning between apatite and silicate melt: Chemical Geology, v. 506, p. 162–174. 10.1016/j.chemgeo.2018.12.015.
  • Streck, M.J., 2008, Mineral textures and zoning as evidence for open system processes: Reviews in Mineralogy and Geochemistry, v. 69, no. 1, p. 595–622. 10.2138/rmg.2008.69.15.
  • Sun, K., An, M., Jiang, X., Zhi, C., and Tan, H., 2022, Timing of Paleozoic metamorphism in the jiaobei terrane, East China: Evidence from apatite U-Pb age and trace element composition: Minerals, v. 12, no. 10, p. 1294. 10.3390/min12101294.
  • Sun, C.Y., Cawood, P.A., Xu, W.L., Zhang, X.M., Tang, J., Li, Y., Sun, Z.X., and Xu, T., 2022, In situ geochemical composition of apatite in granitoids from the eastern central Asian orogenic belt: A window into petrogenesis: Geochimica et Cosmochimica Acta, v. 317, p. 552–573. 10.1016/j.gca.2021.10.028.
  • Sun, K., Chen, B., and Deng, J., 2019, Biotite in highly evolved granites from the Shimensi W–Cu–Mo polymetallic ore deposit, China: Insights into magma source and evolution: Lithos, v. v, 350, p. 105245. 10.1016/j.lithos.2019.105245.
  • Sun, W., Huang, R.F., Li, H., Hu, Y.B., Zhang, C.C., Sun, S.J., Zhang, L.P., Ding, X., Li, C.Y., Zartman, R.E., and Ling, M.X., 2015, Porphyry deposits and oxidized magmas: Ore Geology Reviews, v. 65, p. 97–131. 10.1016/j.oregeorev.2014.09.004.
  • Sun, S.J., Yang, X.Y., Wang, G.J., Sun, W.D., Zhang, H., Li, C.Y., and Ding, X., 2019, In situ elemental and Sr-O isotopic studies on apatite from the Xu-Huai intrusion at the southern margin of the North China craton: Implications for petrogenesis and metallogeny: Chemical Geology, v. 510, p. 200–214. 10.1016/j.chemgeo.2019.02.010.
  • Sun, J.F., Yang, J.H., Zhang, J.H., Yang, Y.H., and Zhu, Y.S., 2021, Apatite geochemical and Sr–Nd isotopic insights into granitoid petrogenesis: Chemical Geology, v. 566, p. 120104. 10.1016/j.chemgeo.2021.120104.
  • Turner, S.P., Foden, J.D., and Morrison, R.S., 1992, Derivation of some A-type magmas by fractionation of basaltic magma: An example from the Padthaway: Lithos, v. 28, no. 2, p. 151–179. Ridge, South Australia: Lithos. 10.1016/0024-4937(92)90029-X
  • Vasyukova, O., and Williams-Jones, A., 2020, Partial melting, fractional crystallisation, liquid immiscibility and hydrothermal mobilisation – a ‘recipe’ for the formation of economic A-type granite-hosted HFSE deposits: Lithos, v. 356-357, p. 105300. 10.1016/j.lithos.2019.105300.
  • Wang, X.L., 2017, Some new research progresses and main scientific problems of granitic rocks: Acta Petrologica Sinica, v. 33, no. 5, p. 1445–1458.
  • Wang, H., Cai, K., Sun, M., Xia, X.P., Lai, C.K., Li, P., Wan, B., and Zhang, Z., 2022, Apatite as a magma redox indicator and its application in metallogenic research: Lithos, v. 106749. 10.2139/ssrn.4059027.
  • Wang, F.Y., Ge, C., Ning, S.Y., Nie, L.Q., Zhong, G.X., and White, N.C., 2017, A new approach to LA-ICP-MS mapping and application in geology: Acta Petrologica Sinica, v. 33, no. 11, p. 3422–3436.
  • Wang, R., Luo, C.H., Xia, W.J., Sun, Y.C., Liu, B., and Zhang, J.B., 2021a, Progresses in the study of high magmatic water and oxidation state of post-collisional magmas in the gangdese porphyry deposit belt: Bulletin of Mineralogy Petrology and Geochemistry, v. 40, no. 5, p. 1061–1077.
  • Wang, L.X., Ma, C.Q., Zhang, C., Zhu, Y.X., and Marks, M.A.W., 2018, Halogen geochemistry of I- and A-type granites from Jiuhuashan region (South China): Insights into the elevated fluorine in A-type granite: Chemical Geology, v. 478, p. 164–182. 10.1016/j.chemgeo.2017.09.033.
  • Wang, R., Weinberg, R.F., Collins, W.J., Richards, J.P., and Zhu, D.C., 2018, Origin of postcollisional magmas and formation of porphyry Cu deposits in southern Tibet: Earth Science Review, v. 181, p. 122–143. 10.1016/j.earscirev.2018.02.019.
  • Wang, X.S., Williams-Jones, A.E., Hu, R.Z., Shang, L.B., and Bi, X.W., 2021b, The role of fluorine in granite-related hydrothermal tungsten ore genesis: Results of experiments and modeling: Geochimica et cosmochimica acta, v. 292, p. 170–187. 10.1016/j.gca.2020.09.032.
  • Wang, X.L., Zhou, J.C., Chen, X., Zhang, F.F., and Sun, Z.M., 2017, Formation and evolution of the Jiangnan Orogen: Bulletin of Mineralogy: Petrology and Geochemistry, v. 36, no. 5, p. 714–735.
  • Wang, R., Zhu, D., Wang, Q., Hou, Z., Yang, Z., Zhao, Z, and Mo, X, 2020, Porphyry mineralization in the Tethyan orogen. Sci. China Earth Sci. v. 63, no. 12, p. 2042–2067. 10.1007/s11430-019-9609-0
  • Watson, E.B., and Green, T.H., 1981, Apatite/Liquid partition coefficients for the rare earth elements and strontium Earth and Planetary Science Letters : v. 56, p. p. 405–421.
  • Webster, J.D., and Piccoli, P.M., 2015, Magmatic apatite: A powerful, yet deceptive, mineral: Elements, v. 11, no. 3, p. 177–182. 10.2113/gselements.11.3.177.
  • Webster, J.D., Tappen, C.M., and Mandeville, C.W., 2009, Partitioning behavior of chlorine and fluorine in the system apatite-melt-fluid. II: Felsic silicate systems at 200 MPa: Geochimica et cosmochimica acta, v. 73, no. 3, p. 559–581. 10.1016/j.gca.2008.10.034.
  • Webster, J., Thomas, R., Förster, H.J., Seltmann, R., and Tappen, C., 2004, Geochemical evolution of halogen-enriched granite magmas and mineralizing fluids of the zinnwald tin-tungsten mining district, Erzgebirge: Germany, Mineralium Deposita, Vol. 39, 452–472 p.
  • Whalen, J.B., Currie, K.L., and Chappell, B.W., 1987, A-type granites: Geochemical characteristics, discrimination and petrogenesis: Contributions to mineralogy and petrology, v: Contributions to Mineralogy and Petrology, v. 95, no. 4, p. 407–419. 10.1007/BF00402202
  • Williams-Jones, A., and Migdisov, A., 2014, Experimental constraints on the transport and deposition of metals in ore-forming hydrothermal systems: Soc: Economic Geology, v. 18, p. 77–96.
  • Wu, F., Liu, X., Ji, W., Wang, J., and Yang, L., 2017, Highly fractionated granites: Recognition and research: Science China Earth Sciences, v. 60, no. 7, p. 1201–1219. in Chinese with English abstract. 10.1007/s11430-016-5139-1.
  • Xing, C.M., and Wang, C.Y., 2017, Cathodoluminescence images and trace element compositions of fluorapatite from the hongge layered intrusion in SW China: A record of prolonged crystallization and overprinted fluid metasomatism: American Mineralogist, v. 102, no. 7, p. 1390–1401. 10.2138/am-2017-6028.
  • Xue, H.M., Wang, Y.G., Ma, F., Wang, C., Wang, D.E., and Zuo, Y.L., 2009, Zircon U-Pb SHRIMP ages of the Taiping (calc-alkaline)-Huangshan (alkaline) composite intrusive: Constraints on Mesozoic lithospheric thinning of the southeastern Yangtze craton: Science in China Series D: Earth Sciences, v. 52, no. 11, p. 1756–1770. 10.1007/s11430-009-0133-9.
  • Yang, W.B., Niu, H.C., Li, N.B., Hollings, P., Zurevinski, S., and Xing, C.M., 2020, Concentrating of Zr, REE, Nb and Y during the magmatic-hydrothermal evolution of the Baerzhe alkaline granite, NE China: Implications for mineralization: Lithos, v. 358–359, p. 105411. 10.1016/j.lithos.2020.105411.
  • Yang, Y., Pan, X., Hou, Z., and Deng, Y., 2021, Redox states and protoliths of late Mesozoic granitoids in the eastern Jiangnan Orogen: Implications for W, Mo, Cu, Sn, and (Au) mineralization: Ore Geology Reviews, v. 134, p. 104038. 10.1016/j.oregeorev.2021.104038.
  • Yang, J.H., Wu, F.Y., Chung, S.L., Wilde, S.A., and Chu, M.F., 2006, A hybrid origin for the Qianshan A-type granite, northeast China: Geochemical and Sr–Nd–Hf isotopic evidence: Lithos, v. 89, no. (1–2), p. 89–106. 10.1016/j.lithos.2005.10.002.
  • Yan, J., Hou, T.J., Wang, A.G., Wang, D.Z., Zhang, D.Y., Weng, W.F., Liu, J.M., Liu, X.Q., and Li, Q.Z., 2017, Petrogenetic contrastive studies on the Mesozoic early stage ore-bearing and late stage ore-barren granites from the southern Anhui Province: Science China Earth Sciences, v. 60, no. 11, p. 1920–1941. 10.1007/s11430-016-9070-4.
  • Yan, X.Y., Yang, D.B., Xu, W.L., Quan, Y.K., Wang, A.Q., Hao, L.R., Yang, H.T., and Wang, F., 2023, Apatite geochemistry from mafic rocks in the northeastern North China craton: New insights into petrogenesis: Lithos, v. 436, p. 106942. 10.1016/j.lithos.2022.106942.
  • Yao, J., Cawood, P.A., Shu, L., and Zhao, G., 2019, Jiangnan orogen, South China: A~ 970–820 Ma rodinia margin accretionary belt: Earth Science Review, v. 196, p. 102872. 10.1016/j.earscirev.2019.05.016.
  • Yue, Q., 2020, Geochronology and petrogenesis of Yanshanian granites in southern Anhui: Master’s dissertation: Hefei, Hefei University of Technology.
  • Yue, Q., Yan, J., Liu, J., Xie, J., Li, Q., and Luo, Q., 2020, Geochronology, petrogenesis and tectonic implications of the early Cretaceous granitoids in the Jingde–Guangde area, Anhui Province: South China: Journal of Asian Earth Sciences, v. 190, p. 104150. 10.1016/j.jseaes.2019.104150.
  • Zajacz, Z., Candela, P. A., Piccoli, P. M, and Sanchez-Valle, C, 2012. The partitioning of sulfur and chlorine between andesite melts and magmatic volatiles and the exchange coefficients of major cations. Geochimica et Cosmochimica Acta, v. 89, p. 81–101. 10.1016/j.gca.2012.04.039
  • Zhang, X., Guo, F., Zhang, B., Zhao, L., and Wang, G., 2021, Mixing of cogenetic magmas in the Cretaceous Zhangzhou calc-alkaline granite from southeast China recorded by in-situ apatite geochemistry: American Mineralogist, v. 106, no. 10, p. 1679–1689. 10.2138/am-2021-7786.
  • Zhang, J.J., Wang, G.J., Yang, X.Y., Sun, W.D., and Dai, S.Q., 2012, The petrogenesis of the Jingde granodiorite and its MMEs: Constraints from geochemistry,zircon U-Pb dating and Hf isotopic compositions: Acta Petrologica Sinica, v. 28, no. 12, p. 4047–4063.
  • Zhang, Y.S., Yan, J., Li, Q.Z., Liu, X.Q., Gao, R., and Chen, F.K., 2018, Pulses of late Mesozoic magmatism: Zircon ages and Hf-O isotopic composition of the qingyang–Jiuhuashan granitic complex, southern Anhui province, eastern China: Journal of Asian Earth Sciences, v. 167, p. 181–196. 10.1016/j.jseaes.2017.08.003.
  • Zhang, S.B., and Zheng, Y.F., 2013, Formation and evolution of Precambrian continental lithosphere in South China: Gondwana Research, v. 23, no. 4, p. 1241–1260. 10.1016/j.gr.2012.09.005.
  • Zhao, G., and Cawood, P.A., 2012, Precambrian geology of China: Precambrian Research, v. 222, p. 13–54. 10.1016/j.precamres.2012.09.017.
  • Zhao, J.H., Zhang, S.B., and Wang, X.L., 2018, Neoproterozoic geology and reconstruction of South China: Precambrian Research, v. 309, p. 1–5. 10.1016/j.precamres.2018.02.004.
  • Zhou, R.J., Wen, G., Li, J.W., Jiang, S.Y., Hu, H., Deng, X.D., Zhao, X.F., Yan, D.R., Wei, K.T., Cai, H.A., Shang, S.T., Li, B.C., and Dai, X.K., 2022, Apatite chemistry as a petrogenetic–metallogenic indicator for skarn ore-related granitoids: An example from the daye Fe–Cu–(au–Mo–W) district, eastern China: Contributions to Mineralogy and Petrology, v. 177, no. 2, p. 1–21. 10.1007/s00410-022-01890-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.