191
Views
9
CrossRef citations to date
0
Altmetric
Section B

Difference schemes for time-dependent heat conduction models with delay

, , &
Pages 53-61 | Received 20 Oct 2012, Accepted 18 Feb 2013, Published online: 15 Apr 2013

REFERENCES

  • D. Agirseven, Approximate solutions of delay parabolic equations with the Dirichlet condition, Abstr. Appl. Anal. 2012, Art. ID 682752 (2012) 31 p.
  • A. Ashyralyev and D. Agirseven, Finite difference method for delay parabolic equations, in Numerical Analysis and Applied Mathematics ICNAAM 2011, AIP Conf. Proc. 1389 (2011), pp. 573–576. doi: 10.1063/1.3636795
  • J. Cabrera, M.A. Castro, F. Rodríguez, and J.A. Martín, Difference schemes for numerical solutions of lagging models of heat conduction, Math. Comput. Modelling 57 (2013), pp. 1625–1632. doi: 10.1016/j.mcm.2011.10.048
  • C. Cattaneo, Sur une forme de l’équation de la chaleur éliminant le paradoxe d'une propagation instantanée, C. R. Acad. Sci. 247 (1958), pp. 431–433.
  • C.I. Christov and P.M. Jordan, Heat conduction paradox involving second-sound propagation in moving media, Phys. Rev. Lett. 94 (2005), p. 154301. doi: 10.1103/PhysRevLett.94.154301
  • W. Dai and R. Nassar, A finite difference scheme for solving the heat transport equation at the microscale, Numer. Methods Partial Differential Equations 15 (1999), pp. 697–708. doi: 10.1002/(SICI)1098-2426(199911)15:6<697::AID-NUM6>3.0.CO;2-#
  • W. Dai and R. Nassar, A compact finite difference scheme for solving a three-dimensional heat transport equation in a thin film, Numer. Methods Partial Differential Equations 16 (2000), pp. 441–458. doi: 10.1002/1098-2426(200009)16:5<441::AID-NUM3>3.0.CO;2-0
  • P. García, M.A. Castro, J.A. Martín, and A. Sirvent, Numerical solutions of diffusion mathematical models with delay, Math. Comput. Modelling 50 (2009), pp. 860–868. doi: 10.1016/j.mcm.2009.05.015
  • P. García, M.A. Castro, J.A. Martín, and A. Sirvent, Convergence of two implicit numerical schemes for diffusion mathematical models with delay, Math. Comput. Modelling 52 (2010), pp. 1279–1287. doi: 10.1016/j.mcm.2010.02.016
  • B. Gustafsson, H.O. Kreiss, and J. Oliger, Time Dependent Problems and Difference Methods, John Wiley & Sons, Inc, New York, 1995.
  • P.M. Jordan, W. Dai, and R.E. Mickens, A note on the delayed heat equation: Instability with respect to initial data, Mech. Res. Comm. 35 (2008), pp. 414–420. doi: 10.1016/j.mechrescom.2008.04.001
  • D.D. Joseph and L. Preziosi, Heat waves, Rev. Modern Phys. 61 (1989), pp. 41–73. doi: 10.1103/RevModPhys.61.41
  • V.V. Kulish and V.B. Novozhilov, An integral equation for the dual-lag model of heat transfer, ASME J. Heat Transfer 126 (2004), pp. 805–808. doi: 10.1115/1.1797034
  • T.Q. Qiu and C.L. Tien, Short-pulse laser heating on metals, Int. J. Heat Mass Transfer 35 (1992), pp. 719–726. doi: 10.1016/0017-9310(92)90131-B
  • T.Q. Qiu and C.L. Tien, Heat transfer mechanisms during short-pulse laser heating of metals, ASME J. Heat Transfer 115 (1993), pp. 835–841. doi: 10.1115/1.2911377
  • R. Quintanilla and R. Racke, A note on stability in dual-phase-lag heat conduction, Int. J. Heat Mass Transfer 49 (2006), pp. 1209–1213. doi: 10.1016/j.ijheatmasstransfer.2005.10.016
  • R.D. Richtmyer and K.W. Morton, Difference Methods for Initial-Value Problems, John Wiley & Sons, New York, 1967.
  • J.W. Thomas, Numerical Partial Differential Equations, Springer-Verlag, New York, 1995.
  • H. Tian, Asymptotic stability of numerical methods for linear delay parabolic differential equations, Comput. Math. Appl. 56 (2008), pp. 1758–1765. doi: 10.1016/j.camwa.2008.05.001
  • D.Y. Tzou, On the thermal shock wave induced by a moving heat source, J. Heat Transfer 111 (1989), pp. 232–238. doi: 10.1115/1.3250667
  • D.Y. Tzou, A unified approach for heat conduction from macro to micro-scales, ASME J. Heat Transfer 117 (1995), pp. 8–16. doi: 10.1115/1.2822329
  • D.Y. Tzou, The generalized lagging response in small-scale and high-rate heating, Int. J. Heat Mass Transfer 38 (1995), pp. 3231–3240. doi: 10.1016/0017-9310(95)00052-B
  • D.Y. Tzou, Macro- to Microscale Heat Transfer: The Lagging Behavior, Taylor & Francis, Washington, DC, 1996.
  • J.J. Vadasz and S. Govender, Thermal wave effects on heat transfer enhancement in nanofluids suspensions, Int. J. Thermal Sci. 49 (2010), pp. 235–242. doi: 10.1016/j.ijthermalsci.2009.06.002
  • P. Vernotte, Les paradoxes de la théorie continue de l’équation de la chaleur, C. R. Acad. Sci. 246 (1958), pp. 3154–3155.
  • L. Wang and X. Wei, Heat conduction in nanofluids, Chaos Solitons Fractals 39 (2009), pp. 2211–2215. doi: 10.1016/j.chaos.2007.06.072
  • H. Wanng, W. Dai, R. Nassar, and R. Melnik, A finite difference method for studying thermal deformation in a thin film exposed to ultrashort-pulsed lasers, Int. J. Heat Mass Transfer 49 (2006), pp. 2712–2723. doi: 10.1016/j.ijheatmasstransfer.2006.01.013
  • H. Wanng, W. Dai, and L.G. Hewavitharana, A finite difference method for studying thermal deformation in a double-layered thin film with interfacial contact exposed to ultrashort pulsed lasers, Int. J. Thermal Sci. 47 (2008), pp. 7–24. doi: 10.1016/j.ijthermalsci.2007.01.023
  • M. Xu and L. Wang, Dual-phase-lagging heat conduction based on Boltzmann transport equation, Int. J. Heat Mass Transfer 48 (2005), pp. 5616–5624. doi: 10.1016/j.ijheatmasstransfer.2005.05.040
  • F. Xu, K.A. Seffen, and T.J. Liu, Non-Fourier analysis of skin biothermomechanics, Int. J. Heat Mass Transfer 51 (2008), pp. 2237–2259. doi: 10.1016/j.ijheatmasstransfer.2007.10.024
  • Q. Zhang and C. Zhang, A compact difference scheme combined with extrapolation techniques for solving a class of neutral delay parabolic differential equations, Appl. Math. Lett. 26 (2013), pp. 306–312. doi: 10.1016/j.aml.2012.09.015
  • S. Zhang, W. Dai, H. Wang, and R. Melnik, A finite difference method for studying thermal deformation in a 3D thin film exposed to ultrashort pulsed lasers, Int. J. Heat Mass Transfer 51 (2008), pp. 1979–1995. doi: 10.1016/j.ijheatmasstransfer.2007.06.040
  • J. Zhou, J.K. Chen, and Y. Zhang, Dual-phase-lag effects on thermal damage to biological tissues caused by laser irradiations, Comput. Biol. Med. 39 (2009), pp. 286–293. doi: 10.1016/j.compbiomed.2009.01.002
  • J. Zhou, Y. Zhang, and J.K. Chen, An axisymmetric dual-phase-lag bioheat model for laser heating of living tissues, Int. J. Thermal Sci. 48 (2009), pp. 1477–1485. doi: 10.1016/j.ijthermalsci.2008.12.012

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.