187
Views
4
CrossRef citations to date
0
Altmetric
Section B

A comprehensive Lagrangian flame–kernel model to predict ignition in SI engines

, , &
Pages 157-174 | Received 19 Oct 2012, Accepted 23 Jul 2013, Published online: 24 Sep 2013

REFERENCES

  • R. Borghi, On the structure and morphology of turbulent premixed flames, in Recent Advances in the Aerospace Sciences, C. Bruno and C. Casci, eds., Pergamon Press, London, 1984, pp. 117–138.
  • O. Colin, A. Benkenida, and C. Angelberger, 3d modeling of mixing, ignition and combustion phenomena in highly stratified gasoline engines, Oil Gas Sci. Technol. 58 (2003), pp. 47–62.
  • F. Contino, H. Jeanmart, T. Lucchini, and G. D'Errico, Coupling of in situ adaptive tabulation and dynamic adaptive chemistry: An effective method for solving combustion in engine simulations, Proc. Combus. Inst. 33(2) (2011), pp. 3057–3064. doi: 10.1016/j.proci.2010.08.002
  • A. D'Angola, G. Colonna, C. Gorse, and M. Capitelli, Thermodynamic and transport properties in equilibrium air plasmas in a wide pressure and temperature range, Eur. Phys. J. D 46 (2008), pp. 129–150. doi: 10.1140/epjd/e2007-00305-4
  • R. Dahms, T.D. Fansler, M.C. Drake, T.-W. Kuo, A.M. Lippert, and N. Peters, Modeling ignition phenomena in spray-guided spark-ignited engines, Proc. Combus. Inst. 32(2) (2009), pp. 2743–2750. doi: 10.1016/j.proci.2008.05.052
  • R.N. Dahms, M.C. Drake, T.D. Fansler, T.-W. Kuo, and N. Peters, Understanding ignition processes in spray-guided gasoline engines using high-speed imaging and the extended spark-ignition model SparkCIMM. Part A: Spark channel processes and the turbulent flame front propagation, Combus. Flame 158(11) (2011), pp. 2229–2244.
  • G. D'Errico, T. Lucchini, S. Merola, and C. Tornatore, Application of a thermodynamic model with a complex chemistry to a cycle resolved knock prediction on a spark ignition optical engine, Int. J. Auto. Technol. 13(3) (2012), pp. 389–399. doi: 10.1007/s12239-012-0036-1
  • J.M. Duclos and O. Colin, Arc and kernel tracking ignition model for 3D spark-ignition engine calculations, Proceedings of COMODIA 2001 Conference, Nagoja, 2001.
  • J.P. Duclos, M. Zolver, and T. Baritaud, 3d modeling of combustion for Di-Si engines, Oil Gas Sci. Technol. 54 (1999), pp. 259–264. doi: 10.2516/ogst:1999023
  • S. Falfari and G. Bianchi, Development of an ignition model for S.I. engines simulation, SAE Paper, 2007-01-0148, 2007.
  • R. Herweg, Ph. Begleris, A. Zettlitz, and G.F.W. Ziegler, Flow field effects on flame kernel formation in a spark-ignition engine, SAE Paper, 881639, 1988.
  • J.B. Heywood, Internal Combustion Engine Fundamentals, McGraw-Hill, New York, 1988.
  • J. Kim and K. Anderson, Spark anemometry of bulk gas velocity at the plug gap of a firing engine, SAE Paper, 952459, 1995.
  • T. Lucchini, G. D'Errico, and D. Ettorre, Numerical investigation of the spray-mesh-turbulence interactions for high-pressure, evaporating sprays at engine conditions, Int. J. Heat Fluid Flow 32 (2011), pp. 285–297. doi: 10.1016/j.ijheatfluidflow.2010.07.006
  • T. Lucchini, G. D'Errico, A. Onorati, G. Bonandrini, L. Venturoli, and R. Di Gioia, Development of a CFD approach to model fuel–air mixing in gasoline direct-injection engines, SAE Paper, 2012-01-0146, 2012.
  • R.R. Maly and R. Herweg, A fundamental model for flame kernel formation in SI engines, SAE Paper, 922243, 1992.
  • A. Montanaro, L. Allocca, D. Ettorre, T. Lucchini, F. Brusiani, and G. Cazzoli, Experimental characterization of high-pressure impinging sprays for CFD modeling of GDI engines, SAE Int. J. Engines 4 (2011), pp. 747–763.
  • N. Nordin, Complex chemistry modeling of diesel spray combustion, PhD thesis, Department of Thermo Fluid Dynamics, Chalmers University of Technology, 2001.
  • OpenFOAM website. ESI Group, 2012. Available at http://www.openfoam.org.
  • Yu.P. Raizer, Gas Discharge Physics, Springer, Berlin, 1991.
  • G.S. Settles, Schlieren and Shadowgraph Techniques, Springer, Berlin, 2001.
  • H. Shen, P. Hinze, and J. Heywood, A model for flame initiation and early development in SI engine and its application to cycle-to-cycle variations, SAE Paper, 942049, 1994.
  • J. Song and M. Sunwoo, A modeling and experimental study of initial flame kernel development and propagation in SI engines, SAE Paper, 2000-01-0960, 2000. doi: 10.4271/2000-01-0960
  • Z. Tan and R.D. Reitz, Modeling ignition and combustion in spark-ignition engines using a level-set method, SAE Paper, 2003-01-0722, 2003. doi: 10.4271/2003-01-0722
  • M. Thiele, S. Selle, U. Riedel, J. Warnatz, and U. Maas, Numerical simulation of spark ignition including ionization, Proc. Combus. Inst. 28 (2000), pp. 1177–1185. doi: 10.1016/S0082-0784(00)80328-8
  • H. Willems and R. Sierens, Modeling the initial growth of the plasma and flame kernel in SI engines, J. Eng. Gas Turbines Power 125 (2003), pp. 479–484. doi: 10.1115/1.1501912
  • X. Yang, A. Solomon, and T. Kuo, Ignition and combustion simulations of spray-guided SIDI engine using Arrhenius combustion with spark-energy deposition model, SAE Paper, 2012-01-0147, 2012.
  • K. Yun, S. Lee, and N. Sung, A study of the propagation of turbulent premixed flame using the flame surface density model in a constant volume combustion chamber, KSME Int. J. 16(4) (2002), pp. 564–571.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.