176
Views
3
CrossRef citations to date
0
Altmetric
Section B

A new coupled high-order compact method for the three-dimensional nonlinear biharmonic equations

&
Pages 2307-2325 | Received 09 Jan 2013, Accepted 22 Oct 2013, Published online: 26 Mar 2014

References

  • I. Altas, J. Dym, M.M. Gupta, and R. Manohar, Multigrid solution of automatically generated highorder discretizations for the biharmonic equation, SIAM J. Sci. Comput. 19 (1998), pp.1575–1585. doi: 10.1137/S1464827596296970
  • I. Altas, J. Erhel, and M.M. Gupta, High accuracy solution of three-dimensional biharmonic equations, Numer. Algorithms 29 (2002), pp.1–19. doi: 10.1023/A:1014866618680
  • M. Arad, A. Yakhot, and G. Ben-Dor, A highly accurate numerical solution of a biharmonic equation, Numer. Methods Partial Differential Equations 13(4) (1997), pp.375–391. doi: 10.1002/(SICI)1098-2426(199707)13:4<375::AID-NUM5>3.0.CO;2-I
  • B. Bialecki, A fourth order finite difference method for the Dirichlet biharmonic problem, Numer. Algorithms. 61(3) (2012), pp.351–375. doi: 10.1007/s11075-012-9536-3
  • A. Brüer, B. Gustafsson, P. Löstedt, and J. Nilsson, High order accurate solution of the incompressible Navier–Stokes equations, J. Comput. Phys. 203 (2005), pp.49–71. doi: 10.1016/j.jcp.2004.08.019
  • D. Calhoun, A Cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irregular regions, J. Comput. Phys. 176 (2002), pp.231–275. doi: 10.1006/jcph.2001.6970
  • G.F. Carey and W.F. Spotz, Extension of high-order compact schemes to time dependent problems, Numer. Methods Partial Differential Equations 17(6) (2001), pp.657–672.
  • G. Chen, Z.L. Li, and P. Lin, A fast finite difference method for biharmonic equations on irregular domains, CRSC-TR04-09, North Carolina State University, Raleigh, 2004.
  • C. Davini and I. Pitacco, An unconstrained mixed method for the biharmonic problem, SIAM J. Numer. Anal. 38 (2001), pp.820–836. doi: 10.1137/S0036142999359773
  • M. Dehghan and A. Mohebbi, Multigrid solution of high order discretisation for three-dimensional biharmonic equation with Dirichlet boundary conditions of second kind, Appl. Math. Comput. 180 (2006), pp.575–593. doi: 10.1016/j.amc.2005.12.037
  • L.W. Ehrlich, Solving the biharmonic equations as coupled finite difference equations, SIAM J. Numer. Anal. 8(2) (1971), pp.78–287. doi: 10.1137/0708029
  • L.W. Ehrlich and M.M. Gupta, Some difference schemes for the biharmonic equation, SIAM J. Numer. Anal. 12(5) (1975), pp.773–790. doi: 10.1137/0712058
  • X.L. Feng and Y.N. He, High order iterative methods without derivatives for solving nonlinear equations, Appl. Math. Comput. 186(2) (2007), pp.1617–1623. doi: 10.1016/j.amc.2006.08.070
  • D. Fishelov, M. Ben-Artzi, and J.-P. Croisille, Recent advances in the study of a fourth-order compact scheme for the one-dimensional biharmonic equation, J. Sci. Comput. 53(1) (2012), pp.55–79. doi: 10.1007/s10915-012-9611-x
  • M.M. Gupta and J. Zhang, High accuracy multigrid solution of the 3D convection-diffusion equation, Appl. Math. Comput. 113 (2000), pp.249–274. doi: 10.1016/S0096-3003(99)00085-5
  • H. Johansen and P. Colella, A Cartesian grid embedded boundary method for Poisson equations on irregular domains, J. Comput. Phys. 147 (1998), pp.60–85. doi: 10.1006/jcph.1998.5965
  • D. Khattar, S. Singh, and R.K. Mohanty, A new coupled approach high accuracy numerical method for the solution of 3D non-linear biharmonic equations, Appl. Math. Comput. 215 (2009), pp.3036–3044. doi: 10.1016/j.amc.2009.09.052
  • J. Li, Full-order convergence of a mixed finite element method for fourth-order elliptic equations, J. Math. Anal. Appl. 230 (1999), pp.329–349. doi: 10.1006/jmaa.1998.6209
  • M. Li and T. Tang, A compact fourth-order finite difference scheme for unsteady viscous incompressible flows, J. Sci. Comput. 16(1) (2001), pp.29–45. doi: 10.1023/A:1011146429794
  • M. Li, B. Fornberg, and T. Tang, A compact fourth order finite difference scheme for the steady incompressible Navier–Stokes equations, Int. J. Numer. Methods Fluids 20 (1995), pp.1137–1151. doi: 10.1002/fld.1650201003
  • J.W. McLaurin, A general coupled equation approach for solving the biharmonic boundary value problem, SIAM J. Numer. Anal. 11(1) (1974), pp.14–33. doi: 10.1137/0711003
  • R.K. Mohanty, A fourth-order finite difference method for the general one-dimensional nonlinear biharmonic problems of first kind, J. Comput. Appl. Math. 114 (2000), pp.275–290. doi: 10.1016/S0377-0427(99)00202-2
  • R.K. Mohanty and S. Singh, A new fourth order discretization for singularly perturbed two-dimensional non-linear elliptic boundary value problems, Appl. Math. Comput. 175 (2006), pp.1400–1414. doi: 10.1016/j.amc.2005.08.023
  • C.V. Pao, Numerical methods for fourth order nonlinear elliptic boundary value problems, Numer. Methods Partial Differential Equations 17 (2001), pp.347–368. doi: 10.1002/num.1016
  • C.V. Pao and X. Lu, Block monotone iterations for numerical solutions of fourth order nonlinear elliptic boundary value problems, SIAM J. Sci. Comput. 25 (2003), pp.164–185. doi: 10.1137/S1064827502409912
  • J. Smith, The coupled equation approach to the numerical solution of the biharmonic equation by finite differences-I, SIAM J. Numer. Anal. 5(2) (1968), pp.323–339. doi: 10.1137/0705028
  • J. Smith, The coupled equation approach to the numerical solution of the biharmonic equation by finite differences-II, SIAM J. Numer. Anal. 7(1) (1970), pp.104–111. doi: 10.1137/0707005
  • J.W. Stephenson, Single cell discretizations of order two and four for biharmonic problems, J. Comput. Phys. 55 (1984), pp.65–80. doi: 10.1016/0021-9991(84)90015-9
  • K. Wang and X.L. Feng, New predictor-corrector methods of second-order for solving nonlinear equations, Int. J. Comput. Math. 88(2) (2011), pp.296–313.
  • Y.M. Wang and B.Y. Guo, Fourth-order compact finite difference method for fourth-order nonlinear elliptic boundary value problems, J. Comput. Appl. Math. 221 (2008), pp.76–97. doi: 10.1016/j.cam.2007.10.007
  • S.Y. Zhai, X.L. Feng, and Y.N. He, A family of fourth-order and sixth-order compact difference schemes for the three dimensional Poisson equation, J. Sci. Comput. 54 (2013), pp.97–120. doi: 10.1007/s10915-012-9607-6
  • S.Y. Zhai, X.L. Feng, and D.M. Liu, A novel method to deduce a high-order compact difference scheme for the three-dimensional semilinear convection-diffusion equation with variable coefficients, Numer. Heat Transf. B 63 (2013), pp.425–455. doi: 10.1080/10407790.2013.778628
  • S.Y. Zhai, X.L. Feng, and Y.N. He, A robust high-order compact method for the three dimensional nonlinear biharmonic equations, Int. J. Comput. Methods. 11(2) (2014). Available at http://www.worldscientific.com/doi/abs/10.1142/S0219876213500655.
  • J. Zhang, An explicit fourth-order compact finite difference scheme for three dimensional convection–diffusion equation, Comm. Numer. Methods Engrg. 14 (1998), pp.263–280. doi: 10.1002/(SICI)1099-0887(199803)14:3<209::AID-CNM139>3.0.CO;2-P

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.