174
Views
4
CrossRef citations to date
0
Altmetric
Section B

A discontinuous Galerkin method with block cyclic reduction solver for simulating compressible flows on GPUs

, , &
Pages 110-131 | Received 29 Oct 2013, Accepted 14 Jan 2014, Published online: 27 Mar 2014

References

  • M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, Dover Publications, New York, 1972.
  • F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations, J. Comput. Phys. 131 (1997), pp. 267–279. doi: 10.1006/jcph.1996.5572
  • F. Bassi and S. Rebay, High-order accurate discontinuous finite element solution of the 2D Euler equations, J. Comput. Phys. 138 (1997), pp. 251–285. doi: 10.1006/jcph.1997.5454
  • K. Bey, T. Oden, and A. Patra, A parallel hp-adaptive discontinuous Galerkin method for hyperbolic conservation laws, Appl. Numer. Math. 20 (1996), pp. 321–336. doi: 10.1016/0168-9274(95)00101-8
  • R. Biswas, K.D. Devine, and J.E. Flaherty, Parallel, adaptive finite element methods for conservation laws, Appl. Numer. Math. 14 (1994), pp. 255–283. doi: 10.1016/0168-9274(94)90029-9
  • P. Castonguay, D.M. Williams, P.E. Vincent, M. Lopez, and A. Jameson, On the development of a high-order, multi-GPU enabled, compressible viscous flow solver for mixed unstructured grids, AIAA 2011–3229, 2011.
  • B. Cockburn and S.C. W, The Runge–Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems, J. Comput. Phys. 141 (1998), pp. 199–224. doi: 10.1006/jcph.1998.5892
  • A. Corrigan, F.F. Camelli, R. Löhner, and J. Wallin, Running unstructured grid-based CFD solvers on modern graphics hardware, Int. J. Numer. Methods Fluids 66 (2011), pp. 221–229. doi: 10.1002/fld.2254
  • I. Demirdzˇić, Ž. Lilek, and M. Perić, A collocated finite volume method for predicting flows at all speeds, Int. J. Numer. Methods Fluids 16 (1993), pp. 1029–1050. doi: 10.1002/fld.1650161202
  • L.T. Diosady and D.L. Darmofal, Preconditioning methods for discontinuous Galerkin solutions of the Navier–Stokes equations, J. Comput. Phys. 228 (2009), pp. 3917–3935. doi: 10.1016/j.jcp.2009.02.035
  • J.A. Ekaterinaris, High-order accurate, low numerical diffusion methods for aerodynamics, Progress in Aerospace Sciences 41 (2005), pp. 192–300. doi: 10.1016/j.paerosci.2005.03.003
  • E. Elsen, P. LeGresley, and E. Darve, Large calculation of the flow over a hypersonic vehicle using a GPU, J. Comput. Phys. 227 (2008), pp. 10148–10161. doi: 10.1016/j.jcp.2008.08.023
  • V. Esfahanian, A. Nejat, and B. Baghapour, High-order cubic spline boundary representation for discontinuous Galerkin simulation of compressible inviscid flows, 20th AIAA Computational Fluid Dynamics Conference, Honolulu, Hawaii, AIAA 2011–3838, 2011.
  • K.J. Fidkowski, A high-order discontinuous Galerkin multigrid solver for aerodynamic applications, Master's thesis, Massachusetts Institute of Technology, 2004.
  • C. Fletcher, On an alternating direction implicit finite element methods for flow problems, Comput. Appl. Math. Eng. 30 (1982), pp. 307–322. doi: 10.1016/0045-7825(82)90082-2
  • D. Göddeke and R.R. Strzodka, Cyclic reduction tridiagonal solvers on gpus applied to mixed–precision multigrid, IEEE Trans. Parallel Distrib. Syst. 22(1) (2011), pp. 22–32.
  • M. Harris, Optimizing parallel reduction in CUDA, 2007. Available at http://developer.download.nvidia.com/compute/DevZone/C/html/C/src/reduction/doc/reduction.pdf.
  • D. Heller, Some aspects of the cyclic reduction algorithm for block tridiagonal linear systems, SIAM J. Numer. Anal. 13 (1976), pp. 484–496. doi: 10.1137/0713042
  • S.P. Hirshman, K.S. Perumalla, V.E. Lynch, and R. Sánchez, BCYCLIC: A parallel block tridiagonal matrix cyclic solver, J. Comput. Phys. 229 (2010), pp. 6392–6404. doi: 10.1016/j.jcp.2010.04.049
  • R.W. Hockney, A fast direct solution of Poisson's equation using Fourier analysis, J. ACM 12 (1965), pp. 95–113. doi: 10.1145/321250.321259
  • G.S. Jiang and C.W. Shu, Efficient implementation of weighted eno schemes, J. Comput. Phys. 126 (1996), pp. 202–228. doi: 10.1006/jcph.1996.0130
  • H.S. Kim, S. Wu, L.W. Chang, and W.M. Hwu, A scalable Tridiagonal solver for GPUs, Proceeding of International Conference on Parallel Processing, Taipei, aiwan, 2011, pp. 444–453.
  • A. Klöckner, T. Warburton, J. Bridge, and J.S. Hesthaven, Nodal discontinuous Galerkin methods on graphics processors, J. Comput. Phys. 228 (2009), pp. 7863–7882. doi: 10.1016/j.jcp.2009.06.041
  • R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Vol. 31, Cambridge University Press, Cambridge, UK, 2002.
  • J. Luitjens, Global Memory Usage and Strategy, produced by NVIDIA Corporation, 2011.
  • S. Ma and Y. Saad, Block-ADI preconditioners for solving sparse nonsymmetric linear systems of equations, Proceedings of the Conference in Numerical Linear Algebra and Scientific Computation, Kent (Ohio), USA, 1992, pp. 165–178.
  • NVIDIA CUDA C Programming guide version 5, NVIDIA (October 2012).
  • T.A. Oliver, Multigrid solution for high-order discontinuous Galerkin discretizations of the compressible Navier–Stokes equations, Master's thesis, Massachusetts Institute of Technology, 2004.
  • P.O. Persson, Scalable parallel Newton-Krylov solvers for discontinuous Galerkin discretizations, 47th AIAA Aerospace Sciences Meeting and Exhibit, Orlando, Florida, AIAA-2009-606, 2009.
  • A. Rizzi and H. Viviand (eds.), Numerical methods for the computation of inviscid transonic flows with shock waves, A GAMM Workshop, in Notes on Numerical Fluid Mechanics, Vol. 3, Braunschweig/Wiesbaden, Vieweg, 1981.
  • N. Sakharnykh, Efficient tridiagonal solvers for ADI methods and fluid simulation, NVIDIA GPU Technology Conference, San Jose, USA, September 2010.
  • P. Šolín, K. Segeth, and I. Doležel, Higher-Order Finite Element Methods, Chapman and Hall/CRC, London, 2004.
  • C.P. Stone, E.P. Duque, Y. Zhang, D. Car, J.D. Owens, and R.L. Davis, GPGPU parallel algorithms for structured-grid CFD codes, AIAA, 2011, 2011–3221.
  • V. Venkatakrishnan, Convergence to steady state solutions of the Euler equations on unstructured grids with limiters, J. Comput. Phys. 118 (1995), pp. 120–130. doi: 10.1006/jcph.1995.1084
  • Z. Wei, B. Jang, Y. Zhang, and Y. Jia, Parallelizing alternating direction implicit solver on gpus, Procedia Comput. Sci. 18 (2013), pp. 389–398. doi: 10.1016/j.procs.2013.05.202
  • H. Yoshihara and P. Sacher (eds.), Test Cases for Inviscid Flow Field Methods. AGARD–AR–211, AGARD, Neuilly-sur-Seine, France, May 1985, 336 pp.
  • Y. Zhang, J. Cohen, and J.D. Owens, Fast tridiagonal solvers on the GPU, Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Bangalore, India, 2010, pp. 127–136.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.