350
Views
21
CrossRef citations to date
0
Altmetric
Section B

A pseudo-spectral scheme for the approximate solution of a time-fractional diffusion equation

&
Pages 980-994 | Received 09 Jan 2014, Accepted 12 Apr 2014, Published online: 22 May 2014

References

  • D. Baleanu, K. Diethelm, E. Scalas, and J.J. Trujillo, Fractional Calculus: Models and Numerical Methods, World Scientific, Singapore, 2012.
  • R. Baltensperger and J.-P. Berrut, The errors in calculating the pseudospectral differentiation matrices for Čebyšev–Gauss–Lobatto points, Comput. Math. Appl. 37 (1999), pp. 41–48. doi: 10.1016/S0898-1221(98)00240-5
  • R. Baltensperger and M.R. Trummer, Spectral differencing with a twist, SIAM J. Sci. Comput. 24 (2003), pp. 1465–1487. doi: 10.1137/S1064827501388182
  • C. Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer, Berlin, 2006.
  • N. Del Buono and L. Lopez, A survey on methods for computing matrix exponentials in numerical schemes for ODEs, Lecture Notes Comput. Sci. 2658 (2003), pp. 111–120. doi: 10.1007/3-540-44862-4_13
  • K. Diethelm, The Analysis of Fractional Differential Equations, Springer, Berlin, 2010.
  • K. Diethelm, N.J. Ford, A.D. Freed, and Y. Luchko, Algorithms for the fractional calculus: A selection of numerical methods, Comput. Methods Appl. Mech. Eng. 194 (2005), pp. 743–773. doi: 10.1016/j.cma.2004.06.006
  • S. Esmaeili and M. Shamsi, A pseudo-spectral scheme for the approximate solution of a family of fractional differential equations, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), pp. 3646–3654. doi: 10.1016/j.cnsns.2010.12.008
  • S. Esmaeili, M. Shamsi, and M. Dehghan, Numerical solution of fractional differential equations via a Volterra integral equation approach, Central Eur. J. Phys. 11 (2013), pp. 1470–1481. doi: 10.2478/s11534-013-0212-6
  • N.J. Ford, J. Xiao, and Y. Yan, A finite element method for time fractional partial differential equations, Fract. Calc. Appl. Anal. 14 (2011), pp. 454–474. doi: 10.2478/s13540-011-0028-2
  • D. Funaro, Polynomial Approximation of Differential Equations, Springer, Berlin, 1992.
  • R. Garrappa, On linear stability of predictor–corrector algorithms for fractional differential equations, Int. J. Comput. Math. 87 (2010), pp. 2281–2290. doi: 10.1080/00207160802624331
  • R. Garrappa, A family of Adams exponential integrators for fractional linear systems, Comput. Math. Appl. 66 (2013), pp. 717–727. doi: 10.1016/j.camwa.2013.01.022
  • R. Garrappa and M. Popolizio, On the use of matrix functions for fractional partial differential equations, Math. Comput. Simul. 81 (2011), pp. 1045–1056. doi: 10.1016/j.matcom.2010.10.009
  • R. Garrappa and M. Popolizio, On accurate product integration rules for linear fractional differential equations, J. Comput. Appl. Math. 235 (2011), pp. 1085–1097. doi: 10.1016/j.cam.2010.07.008
  • R. Garrappa and M. Popolizio, Evaluation of generalized Mittag-Leffler functions on the real line, Adv. Comput. Math. 39 (2013), pp. 205–225. doi: 10.1007/s10444-012-9274-z
  • G.H. Golub and C.F. Van Loan, Matrix Computations, 4th ed., Johns Hopkins University Press, Baltimore, MD, 2013.
  • R. Gorenflo, J. Loutchko, and Y. Luchko, Computation of the Mittag-Leffler function and its derivatives, Fract. Calc. Appl. Anal. 5 (2002), pp. 491–518.
  • G. Gottlieb and L. Lustman, The spectrum of the Chebyshev collocation operator for the heat equation, SIAM J. Numer. Anal. 20 (1983), pp. 909–921. doi: 10.1137/0720063
  • N.J. Higham, Functions of Matrices, SIAM, Philadelphia, PA, 2008.
  • M. Hochbruck and A. Ostermann, Exponential integrators, Acta Numer. 19 (2010), pp. 209–286. doi: 10.1017/S0962492910000048
  • H. Jafari, S.A. Yousefi, M.A. Firoozjaee, S. Momani, and C.M. Khalique, Application of Legendre wavelets for solving fractional differential equations, Comput. Math. Appl. 62 (2011), pp. 1038–1045. doi: 10.1016/j.camwa.2011.04.024
  • A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006.
  • T.A.M. Langlands and B.I. Henry, The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comput. Phys. 205 (2005), pp. 719–736. doi: 10.1016/j.jcp.2004.11.025
  • X. Li and C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal. 47 (2009), pp. 2108–2131. doi: 10.1137/080718942
  • Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys. 225 (2007), pp. 1533–1552. doi: 10.1016/j.jcp.2007.02.001
  • Y. Luchko, Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation, Fract. Calc. Appl. Anal. 15 (2012), pp. 141–160. doi: 10.2478/s13540-012-0010-7
  • W. McLean and V. Thomée, Maximum-norm error analysis of a numerical solution via Laplace transformation and quadrature of a fractional-order evolution equation, IMA J. Numer. Anal. 30 (2010), pp. 208–230. doi: 10.1093/imanum/drp004
  • R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep. 339 (2000), pp. 1–77. doi: 10.1016/S0370-1573(00)00070-3
  • I. Moret and P. Novati, On the convergence of Krylov subspace methods for Mittag-Leffler functions, SIAM J. Numer. Anal. 49 (2011), pp. 2144–2164. doi: 10.1137/080738374
  • D.A. Murio, Implicit finite difference approximation for time fractional diffusion equations, Comput. Math. Appl. 56 (2008), pp. 1138–1145. doi: 10.1016/j.camwa.2008.02.015
  • I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, CA, 1999.
  • I. Podlubny, A. Chechkin, T. Skovranek, Y. Chen, and B.M. Vinagre Jara, Matrix approach to discrete fractional calculus II: Partial fractional differential equations, J. Comput. Phys. 228 (2009), pp. 3137–3153. doi: 10.1016/j.jcp.2009.01.014
  • I. Podlubny and M. Kacenak, The Matlab mlf code, MATLAB Central File Exchange (2001–2009). File ID: 8738.
  • M. Popolizio, A matrix approach for partial differential equations with Riesz space fractional derivatives, Eur. Phys. J. Special Top. 222 (2013), pp. 1975–1985. doi: 10.1140/epjst/e2013-01978-8
  • L.N. Trefethen, Spectral Methods in Matlab, SIAM, Philadelphia, PA, 2000.
  • L.N. Trefethen, Approximation Theory and Approximation Practice, SIAM, Philadelphia, PA, 2013.
  • H. Vandeven, On the eigenvalues of second-order spectral differentiation operators, Comput. Methods Appl. Mech. Eng. 80 (1990), pp. 313–318. doi: 10.1016/0045-7825(90)90035-K
  • J.A.C. Weideman and S.C. Reddy, A differentiation matrix suite, ACM Trans. Math. Softw. 26 (2000), pp. 465–519. doi: 10.1145/365723.365727
  • J.A.C. Weideman and L.N. Trefethen, The eigenvalues of second-order spectral differentiation matrices, SIAM J. Numer. Anal. 25 (1988), pp. 1279–1298. doi: 10.1137/0725072
  • J.A.C. Weideman and L.N. Trefethen, Parabolic and hyperbolic contours for computing the Bromwich integral, Math. Comput. 76 (2007), pp. 1341–1356. doi: 10.1090/S0025-5718-07-01945-X
  • B.D. Welfert, Generation of pseudospectral differentiation matrices I, SIAM J. Numer. Anal. 34 (1997), pp. 1640–1657. doi: 10.1137/S0036142993295545
  • Y. Yan, K. Pal, and N.J. Ford, Higher order numerical methods for solving fractional differential equations, BIT Numer. Math. (2013), pp. 1–30. Available at http://dx.doi.org/10.1007/s10543-013-0443-3
  • S.B. Yuste and L. Acedo, An explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations, SIAM J. Numer. Anal. 42 (2005), pp. 1862–1874. doi: 10.1137/030602666
  • M. Zayernouri and G.E. Karniadakis, Exponentially accurate spectral and spectral element methods for fractional ODEs, J. Comput. Phys. 257 (2014), pp. 460–480. doi: 10.1016/j.jcp.2013.09.039
  • F. Zeng, C. Li, F. Liu, and I. Turner, The use of finite difference/element approaches for solving the time-fractional subdiffusion equation, SIAM J. Sci. Comput. 35 (2013), pp. 2976–3000. doi: 10.1137/130910865
  • P. Zhuang, F. Liu, V. Anh, and I. Turner, New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation, SIAM J. Numer. Anal. 46 (2008), pp. 1079–1095. doi: 10.1137/060673114

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.