176
Views
12
CrossRef citations to date
0
Altmetric
Section A

Computing the local metric dimension of a graph from the local metric dimension of primary subgraphs

, &
Pages 686-693 | Received 04 Nov 2013, Accepted 22 Apr 2014, Published online: 03 Jun 2014

References

  • J. Cáceres, C. Hernando, M. Mora, I.M. Pelayo, M.L. Puertas, C. Seara, and D.R. Wood, On the metric dimension of cartesian product of graphs, SIAM J. Discrete Math. 21(2) (2007), pp. 423–441. doi: 10.1137/050641867
  • G.G. Chappell, J. Gimbel, and C. Hartman, Bounds on the metric and partition dimensions of a graph, Ars Combin. 88 (2008), pp. 349–366.
  • G. Chartrand, L. Eroh, M.A. Johnson, and O.R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105(1–3) (2000), pp. 99–113. doi: 10.1016/S0166-218X(00)00198-0
  • G. Chartrand, D. Erwin, M. Raines, and P. Zhang, The decomposition dimension of graphs, Graphs Combin. 17(4) (2001), pp. 599–605. doi: 10.1007/PL00007252
  • G. Chartrand, D. Erwin, P.J. Slater, and P. Zhang, Distance-location numbers of graphs, Utilitas Math. 63 (2003), pp. 65–79.
  • G. Chartrand, C. Poisson, and P. Zhang, Resolvability and the upper dimension of graphs, Comput. Math. Appl. 39(12) (2000), pp. 19–28. doi: 10.1016/S0898-1221(00)00126-7
  • G. Chartrand, E. Salehi, and P. Zhang, The partition dimension of a graph, Aequationes Math. 59(1-2) (2000), pp. 45–54. doi: 10.1007/PL00000127
  • E. Deutsch and S. Klavžar, Computing hosoya polynomials of graphs from primary subgraphs, MATCH Commun. Math. Comput. Chem. 70(2) (2013), pp. 627–644.
  • H. Enomoto, Upper bound of the decomposition dimension of a graph, Congr. Numer. 145 (2000), pp. 157–160, Proc. 31st Southeastern Intl. Conf. Combin. Graph th, Comput. (Boca Raton, 2000).
  • H. Enomoto and T. Nakamigawa, On the decomposition dimension of trees, Discrete Math. 252(1–3) (2002), pp. 219–225. doi: 10.1016/S0012-365X(01)00454-X
  • M. Fehr, S. Gosselin, and O.R. Oellermann, The partition dimension of Cayley digraphs, Aequationes Math. 71(1–2) (2006) 1–18. doi: 10.1007/s00010-005-2800-z
  • R. Frucht and F. Harary, On the corona of two graphs,Aequationes Math. 4(3) (1970), pp. 322–325. doi: 10.1007/BF01844162
  • C. Godsil and B. McKay, A new graph product and its spectrum, Bull. Aust. Math. Soc. 18 (1978), pp. 21–28. doi: 10.1017/S0004972700007760
  • F. Harary and R.A. Melter, On the metric dimension of a graph, Ars Combin. 2 (1976), pp. 191–195.
  • T.W. Haynes, M.A. Henning, and J. Howard, Locating and total dominating sets in trees, Discrete Appl. Math. 154(8) (2006), pp. 1293–1300.
  • C. Hernando, M. Mora, I.M. Pelayo, C. Seara, J. Cáceres, and M.L. Puertas, On the metric dimension of some families of graphs, Electronic Notes Discrete Math. 22 (2005), pp. 129–133, 7th International Colloquium on Graph Theory.
  • B.L. Hulme, A.W. Shiver, and P.J. Slater, A boolean algebraic analysis of fire protection, in: Algebraic and Combinatorial Methods in Operations Research Proceedings of the Workshop on Algebraic Structures in Operations Research, R.C-G. R.E. Burkard, and U. Zimmermann eds., North-Holland Mathematics Studies, Vol. 95, North-Holland, Amsterdam, 1984, pp. 215–227. doi: 10.1016/S0304-0208(08)72964-5
  • M. Johnson, Structure-activity maps for visualizing the graph variables arising in drug design, J. Biopharm. Stat. 3(2) (1993), pp. 203–236, pMID: 8220404. doi: 10.1080/10543409308835060
  • M.A. Johnson, Browsable structure-activity datasets, in: R. Carbó-Dorca and P. Mezey (eds.), Advances in Molecular Similarity, Chapter 8, JAI Press Inc, Stamford, CT, 1998, pp. 153–170.
  • S. Khuller, B. Raghavachari, and A. Rosenfeld, Localization in graphs, Technical Report CS-TR-3326 UMIACS, University of Maryland, 1994.
  • S. Khuller, B. Raghavachari, and A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math. 70 (1996), pp. 217–229. doi: 10.1016/0166-218X(95)00106-2
  • R.A. Melter and I. Tomescu, Metric bases in digital geometry, Comput. Vision, Graph. Image Process. 25(1) (1984), pp. 113–121. doi: 10.1016/0734-189X(84)90051-3
  • T. Nakamigawa, A note on the decomposition dimension of complete graphs, Ars Combin. 69 (2003), pp. 161–163.
  • F. Okamoto, B. Phinezy, and P. Zhang, The local metric dimension of a graph, Math. Bohem. 135(3) (2010), pp. 239–255.
  • J.A. Rodríguez-Velázquez, G.A. Barragán-Ramírez, and C. García Gómez, On the local metric dimension of corona product graphs, preprint (2013). Available at arXiv e-prints:1308.6689.
  • J.A. Rodríguez-Velázquez and H. Fernau, On the (adjacency) metric dimension of corona and strong product graphs and their local variants: Combinatorial and computational results, preprint (2013). Available at arXiv eprint:1309.2275.
  • V. Saenpholphat and P. Zhang, Connected resolving decompositions in graphs, Math. Bohem. 128(2) (2003), pp. 121–136.
  • V. Saenpholphat and P. Zhang, Connected resolving sets in graphs, Ars Combin. 68 (2003), pp. 3–16.
  • V. Saenpholphat and P. Zhang, On connected resolvability of graphs, Australas. J. Combin. 28 (2003), pp. 25–37.
  • P.J. Slater, Leaves of trees, Congr. Numer. 14 (1975), pp. 549–559.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.