302
Views
12
CrossRef citations to date
0
Altmetric
Articles

Lattice-based identity-based resplittable threshold public key encryption scheme

, &
Pages 289-307 | Received 08 Jan 2014, Accepted 22 May 2014, Published online: 27 Jun 2014

References

  • S. Agrawal, D. Boneh, and X. Boyen, Efficient lattice (H)IBE in the standard model, in EUROCRYPT, Nice, French Riviera, France, LNCS, H. Gilbert, ed., Springer-Verlag, Heidelberg, 2010, pp. 553–572.
  • M. Ajtai, Generating hard instances of lattice problems (extended abstract), in STOC, Philadelphia. PA, USA, G. L. Miller, ed., ACM, New York, 1996, pp. 99–108.
  • J. Alwen and C. Peikert, Generating shorter bases for hard random lattices, in International Symposium on Theoretical Aspects of Computer Science (STACS 2009), Freiburg, Germany, S. Albers, and J.-Y. Marion, eds., IBFI, Schloss Dagstuhl, 2009, pp. 75–86.
  • B. Applebaum, D. Cash, C. Peikert, and A. Sahai, Fast cryptographic primitives and circular-secure encryption based on hard learning problems, in Crypto, Santa Barbara, California, LNCS, J. Black and S. Halevi, eds., Springer-Verlag, Heidelberg, 2009, pp. 595–618.
  • S. Arita and K. Tsurudome, Construction of threshold public-key encryptions through tag-based encryptionsn, in ACNS, Paris-Rocquencourt, France, LNCS, M. Abdalla, D. Pointcheval, P.-A. Fouque, and D. Vergnaud, eds., Springer-Verlag, Heidelberg, 2009, pp. 186–200.
  • J. Baek and Y. Zheng, Identity-based threshold decryption, in Proceedings of the 7th International Workshop on Theory and Practice in Public Key Cryptography (PKC 2004), Singapore, LNCS, F. Bao, R.H. Deng, and J. Zhou, eds., Springer-Verlag, Heidelberg, March 2004, pp. 262–276.
  • R.E. Bansarkhani and J. Buchmann, Improvement and efficient implementation of a lattice-based signature scheme, Cryptology ePrint Archive, 2013.
  • R. Bendlin and I. Damgard, Threshold decryption and zero-knowledge proofs for lattice-based cryptosystems, in TCC, Zurich, Switzerland, LNCS, D. Micciancio, ed., Springer-Verlag, Heidelberg, 2010, pp. 201–218.
  • R. Bendlin, S. Krehbiel, and C. Peikert, How to share a lattice trapdoor: Threshold protocols for signatures and (h)ibe, in Proceedings of the 11th International Conference on Applied Cryptography and Network Security (ACNS 2013), Banff, Alberta, Canada, LNCS, R. Safavi-Naini and M.E. Locasto, eds., Springer-Verlag, Heidelberg, 2013, pp. 218–236.
  • D. Boneh and M.K. Franklin, Identity based encryption from the weil pairing, in CRYPTO, Santa Barbara, California, LNCS, J. Kilian, ed., Springer-Verlag, Heidelberg, 2001, pp. 213–229.
  • D. Boneh, X. Boyen, and S. Halevi, Chosen ciphertext secure public key threshold encryption without random oracles, in CT-RSA, San Jose, CA, USA, LNCS, D. Pointcheval, ed., Springer-Verlag, Heidelberg, 2006, pp. 226–243.
  • C. Cocks, An identity based encryption scheme based on quadratic residues, in IMA International Conference, Oxford, UK, LNCS, M. Stam, ed., Springer-Verlag, Heidelberg, 2001, pp. 360–363.
  • M.N. Cynthia Dwork, An efficient existentially unforgeable signature scheme and its applications, J. Cryptol. 11(3) (1998), pp. 187–208. doi: 10.1007/s001459900043
  • T.K. Frederiksen, A multi-bit threshold variant of Regev's LWE-based cryptosystem, Cryptology ePrint Archive, 2011.
  • S. Galbraith, Mathematics of Public Key Cryptography, Cambridge University Press, New York, 2012.
  • S. Garg, C. Gentry, and S. Halevi, Candidate multilinear maps from ideal lattices, in Advances in Cryptology EUROCRYPT 2013, Athens, Greece, LNCS, T. Johansson and P.Q. Nguyen, eds., Springer-Verlag, Heidelberg, May 2013, pp. 1–17.
  • C. Gentry, A fully homomorphic encryption scheme, Ph.D. thesis, Stanford University, 2009.
  • C. Gentry, C. Peikert, and V. Vaikuntanathan, Trapdoors for hard lattices and new cryptographic constructions, in STOC, British Columbia, Canada, C. Dwork, ed., ACM, University of Wales, Cardiff, 2008, pp. 197–206.
  • A. Georgescu, A LWE-based secret sharing scheme, IJCA Special issue on Network Security and Cryptography (2011), pp. 27–29 (K.I. Lakhtaria, ed., New York: Foundation of Computer Science).
  • O. Goldreich, S. Goldwasser, and S. Halevi, Public-key cryptosystems from lattice problems, 2010. Available at http://www.groups.csail.mit.edu/cis/lattice/lattice-slides.ps.
  • G. Hanaoka, Y. Kawai, N. Kunihiro, T. Matsuda, J. Weng, R. Zhang, and Y. Zhao, Generic construction of chosen ciphertext secure proxy re-encryption, in CT-RSA, San Francisco, CA, USA, LNCS, O. Dunkelman, ed., Springer-Verlag, Heidelberg, 2012, pp. 349–364.
  • K. Hoffman and R. Kunze, Linear Algebra, Prentice-Hall, Inc, Englewood Cliffs, NJ, 1971.
  • R. Lindner and C. Peikert, Better key sizes (and attacks) for LWE-based encryption, in CT-RSA, San Francisco, CA, USA, LNCS, A. Kiayias, ed., Springer-Verlag, Heidelberg, 2011, pp. 319–339.
  • C.L. Liu, Introduction to Combinatorial Mathematics, McGraw-Hill, New York, 1968.
  • D. Malkhi, Secret Sharing – Lecture Notes, 2002. Available at http://www.cs.huji.ac.il/ ns/SS.pdf.
  • D. Micciancio and S. Goldwasser, Complexity of Lattice Problems: A Cryptographic Perspective, Vol. 671, Kluwer Academic Publishers, Boston, 2002.
  • D. Micciancio and C. Peikert, Trapdoors for lattices: Simpler, tighter, faster, smaller, in Eurocrypt, Cambridge, UK, LNCS, D. Pointcheval and T. Johansson, eds., Springer-Verlag, Heidelberg, 2012, pp. 700–718.
  • C. Peikert and B. Waters, Lossy trapdoor functions and their applications, SIAM J. Comput. 40(6) (2011), pp. 1803–1844. doi: 10.1137/080733954
  • O. Regev, On lattices, learning with errors, random linear codes, and cryptography, in STOC, Baltimore, MD, USA, H.N. Gabow and R. Fagin, eds., ACM, University of Wales, Cardiff, 2005, pp. 84–93.
  • A. Shamir, How to share a secret, Commun. ACM 22(11) (1979), pp. 612–613. doi: 10.1145/359168.359176
  • A. Shamir, Identity-based cryptosystems and signature schemes, in CRYPTO, Santa Barbara, California, USA, LNCS, G.R. Blakley and D. Chaum, eds., Springer-Verlag, Heidelberg, 1984, pp. 47–53.
  • P.W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Comput. 26(5) (1997), pp. 1484–1509. doi: 10.1137/S0097539795293172
  • K. Singh, C. Pandu Rangan, and A.K. Banerjee, Lattice based efficient threshold public key encryption scheme, J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 4(4) (2013), pp. 93–107.
  • X. Xie, R. Xue, and R. Zhang, Efficient threshold encryption from lossy trapdoor functions, in The Fourth International Workshop on Post-Quantum Cryptography (PQCrypto 2011), Taipei, Taiwan, 29 November–2 December 2011, LNCS, B.-Y. Yang, ed., Springer-Verlag, Heidelberg, 2011, pp. 163–178.
  • I. You, Y. Hori, and K. Sakurai, Enhancing svo logic for mobile ipv6 security protocols, J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 2(3) (2011), pp. 26–52.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.