243
Views
3
CrossRef citations to date
0
Altmetric
Section B

Inverse Sturm–Liouville problems with pseudospectral methods

, &
Pages 1373-1384 | Received 25 Nov 2013, Accepted 20 Jun 2014, Published online: 24 Jul 2014

References

  • L. Aceto, P. Ghelardoni, and C. Magherini, Boundary value methods for the reconstruction of Sturm–Liouville potentials, Appl. Math. Comput. 219(6) (2012), pp. 2960–2974. doi: 10.1016/j.amc.2012.09.021
  • A.L. Andrew, Numerical solution of inverse Sturm–Liouville problems, ANZIAM J. 45(E) (2004), pp. C326–C337
  • A.L. Andrew, Numerov's method for inverse Sturm–Liouville problems, Inverse Probl. 21 (2005), pp. 223–238. doi: 10.1088/0266-5611/21/1/014
  • A.L. Andrew, Computing Sturm–Liouville potentials from two spectra, Inverse Probl. 22 (2006), pp. 2069–2081. doi: 10.1088/0266-5611/22/6/010
  • P.B. Bailey, W.N. Everitt, and A. Zettl, Computing eigenvalues of singular Sturm–Liouville problems, Results Math. 20 (1991), pp. 391–423. doi: 10.1007/BF03323182
  • C. Böckmann and A. Kammanee, Broyden method for inverse non-symmetric Sturm–Liouville problems, BIT 51 (2011), pp. 513–528. doi: 10.1007/s10543-011-0317-5
  • G. Borg, Eine Umkehrung der Sturm–Liouvilleschen Eigenwertaufgabe, Acta Math. 78 (1946), pp. 1–96. doi: 10.1007/BF02421600
  • J.P. Boyd, Chebyshev and Fourier Spectral Methods, Dover Publications, New York, 2001.
  • B.M. Brown, V.S. Samko, I.W. Knowles, and M. Marletta, Inverse spectral problem for the Sturm–Liouville equation, Inverse Probl. 19 (2003), pp. 235–252. doi: 10.1088/0266-5611/19/1/314
  • K. Chadan, D. Colton, L. Päivärinta, and W. Rundell, An Introduction to Inverse Scattering and Inverse Spectral Problems, SIAM, Philadelphia, 1997.
  • M.T. Chu and G.H. Golub, Inverse Eigenvalue Problems, Oxford University Press, New York, 2005.
  • P. Deuflhard, Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms, Springer-Verlag, Berlin, 2004.
  • A. Doicu, F. Schreier, and M. Hess, Iteratively regularized Gauss-Newton method for atmospheric remote sensing, Comput. Phys. Comm. 148 (2002), pp. 214–226. doi: 10.1016/S0010-4655(02)00555-6
  • H.W. Engl, M. Hanke, and A. Neubauer, Regularization of inverse problems in Mathematics and its Applications, Vol. 375, Kluwer Academic Publishers, Dordrecht, Boston, London, 1996.
  • D. Funaro, Polynomial Approximation of Differential Equations, Springer Verlag, Berlin, 1992.
  • Q. Gao, X. Cheng, and Z. Huang, On a boundary value method for computing Sturm–Liouville potentials from two spectra, Int. J. Comput. Math. (to appear, doi:10.1080/00207160.2013.790535).
  • I.M. Gel'fand and B.M. Levitan, On the determination of a differential equation from its spectral function, Amer. Math. Soc. Transl. 1 (1955), pp. 253–305.
  • P. Ghelardoni and C. Magherini, BVMs for computing Sturm–Liouville symmetric potentials, Appl. Math. Comput. 217 (2010), pp. 3032–3045. doi: 10.1016/j.amc.2010.08.036
  • P.C. Hansen, and D.P. O'Leary, The use of the L-curve in the regularization of discrete Ill-posed problems, SIAM J. Sci. Comput. 14 (1993), pp. 1487–1503. doi: 10.1137/0914086
  • B. Kaltenbacher, Some Newton-type methods for the regularization of nonlinear ill-posed problems, Inverse Probl. 13 (1997), pp. 729–753. doi: 10.1088/0266-5611/13/3/012
  • A. Kammanee and C. Böckmann, Determination of partially known Sturm–Liouville potentials, Appl. Math. Comput. 204 (2008), pp. 928–937. doi: 10.1016/j.amc.2008.08.001
  • A. Kammanee and C. Böckmann, Boundary value method for inverse Sturm–Liouville problems, Appl. Math. Comput. 214 (2009), pp. 342–352. doi: 10.1016/j.amc.2009.04.002
  • M. Plum, Eigenvalue problems for differential equations, in Wavelets, Multilevel Methods and Elliptic PDE's, M. Ainsworth, J. Levesley, W.A. Light, and M. Marletta, eds., Clarendon Press, Oxford, 1997, pp. 39–83.
  • S. Pruess and C.T. Fulton, Mathematical software for Sturm–Liouville problems, ACM Trans. Math. Software 19 (1993), pp. 360–376. doi: 10.1145/155743.155791
  • J.D. Pryce, Numerical Solution of Sturm–Liouville Problems, Oxford University Press, Oxford, 1993.
  • J.D. Pryce and M. Marletta, Automatic solution of Sturm–Liouville problems using the Pruess method, J. Comput. Appl. Math. 39 (1992), pp. 57–78. doi: 10.1016/0377-0427(92)90222-J
  • M. Rafler and C. Böckmann, Reconstruction method for inverse Sturm–Liouville problems with discontinuous potentials, Inverse Probl. 23 (2007), pp. 933–946. doi: 10.1088/0266-5611/23/3/006
  • A. Rieder, On the regularization of nonlinear ill-posed problems via inexact Newton iterations, Inverse Probl. 15 (1999), pp. 309–327. doi: 10.1088/0266-5611/15/1/028
  • A. Rieder, On convergence rates of inexact Newton regularizations, Numer. Math. 88 (2001), pp. 347–356. doi: 10.1007/PL00005448
  • N. Röhrl, A least-squares functional for solving inverse Sturm–Liouville problems, Inverse Probl. 21 (2005), pp. 2009–2017. doi: 10.1088/0266-5611/21/6/013
  • W. Rundell and P.E. Sacks, Reconstruction techniques for classical inverse Sturm–Liouville problems, Math. Comput. 58 (1992), pp. 161–183. doi: 10.1090/S0025-5718-1992-1106979-0
  • H. Taşeli, The influence of the boundedness of polynomial potentials on the spectrum of the Schrödinger equation, J. Comput. Phys. 101 (1992), pp. 252–255. doi: 10.1016/0021-9991(92)90002-G
  • H. Taşeli, Accurate computation of the energy spectrum for potentials with multiminima, Int. J. Quantum Chem. 46 (1993), pp. 319–334. doi: 10.1002/qua.560460207
  • H. Taşeli, Accurate numerical bounds for the spectral points of singular Sturm–Liouville problems over -∞ < x < ∞, J. Comput. Appl. Math. 115 (2000), pp. 535–546. doi: 10.1016/S0377-0427(99)00302-7
  • H. Taşeli and H. Alıcı, The scaled Hermite–Weber basis in the spectral and pseudospectral pictures, J. Math. Chem. 38 (2005), pp. 367–378. doi: 10.1007/s10910-005-5826-5
  • C.R. Vogel, Computational Methods for Inverse Problems, SIAM, Philadelphia, 2002.
  • J.A.C. Weidemann and S.C. Reddy, A MATLAB differentiation matrix suit, ACM Trans. Math. Softw. 26 (2000), pp. 465–519. doi: 10.1145/365723.365727
  • X. Zhang, Mapped barycentric Chebyshev differentiation matrix method for the solution of regular Sturm–Liouville problems, Appl. Math. Comput. 217 (2010), pp. 2266–2276. doi: 10.1016/j.amc.2010.07.027

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.