356
Views
23
CrossRef citations to date
0
Altmetric
SECTION B

Application of the local radial basis function-based finite difference method for pricing American options

, &
Pages 1608-1624 | Received 28 Jan 2013, Accepted 24 Jul 2014, Published online: 27 Aug 2014

References

  • I. Boztosuna and A. Charafi, An analysis of the linear advection-diffusion equation using mesh-free and mesh- dependent methods, Eng. Anal. Boundary Elem. 26 (2002), pp. 889–895. doi: 10.1016/S0955-7997(02)00053-X
  • G. Chandhini and V.S.S.Y. Sanyasiraju, Local RBF-FD solutions for steady convection–diffusion problems, Int. J. Numer. Methods Eng. 72 (2007), pp. 352–378. doi: 10.1002/nme.2024
  • A.H.D. Cheng, M.A. Golberg, E.J. Kansa, and G. Zammito, Exponential convergence and h-c multiquadratic collocation method for partial differential equations, Numer. Methods Partial Diff. Equ. 19 (2003), pp. 571–594. doi: 10.1002/num.10062
  • P.P. Chinchapatnam, K. Djidjeli, and P.B. Nair, Unsymmetric and symmetric schemes for the unsteady convection diffusion equation, Comput. Methods Appl. Mech. Eng. 195 (2006), pp. 2432–2453. doi: 10.1016/j.cma.2005.05.015
  • S.L. Chung, M.W. Hung, and J.Y. Wang, Tight bounds on American option prices, J. Bank. Financ. 34 (2010), pp. 77–89. doi: 10.1016/j.jbankfin.2009.07.004
  • O. Davydov and D.T. Oanh, On the optimal shape parameter for Gaussian radial basis function finite difference approximation of the Poisson equation, Comput. Math. Appl. 62 (2011), pp. 2143–2161. doi: 10.1016/j.camwa.2011.06.037
  • G.E. Fasshauer, A.Q.M. Khaliq, and D.A. Voss, Using meshfree approximation for multi-asset American options, J. Chinese Inst. Eng. 27 (2004), pp. 563–571. doi: 10.1080/02533839.2004.9670904
  • B. Fornberg and G. Wright, Stable computation of multiquadric interpolants for all values of shape parameter, Comput. Math. Appl 48 (2004), pp. 853–867. doi: 10.1016/j.camwa.2003.08.010
  • B. Fornberg, G. Wright, and E. Larsson, Some observation regarding interpolants in the limit of flate radial basis function, Comput. Math. Appl. 47 (2004), pp. 37–55. doi: 10.1016/S0898-1221(04)90004-1
  • B. Fornberg, E. Larsson, and N. Flyer, Stable computations with Gaussian radial basis functions, SIAM J. Sci. Comput. 33 (2011), pp. 869–892. doi: 10.1137/09076756X
  • B. Fornberg, E. Lehto, and C. Powell, Stable calculation of Gaussian-based RBF-FD stencils, Comput. Math. Appl. 65 (2013), pp. 627–637. doi: 10.1016/j.camwa.2012.11.006
  • A. Golbabai, D. Ahmadian, and M. Milev, Radial basis function with application to finance: American put option under jump diffusion, Math. Comput. Model. 55 (2012), pp. 1354–1362. doi: 10.1016/j.mcm.2011.10.014
  • Y.C. Hon, A quasi radial basis functions method for American option pricing, Comput. Math. Appl. 43 (2002), pp. 513–524. doi: 10.1016/S0898-1221(01)00302-9
  • Y.C. Hon and X.Z. Mao, A radial basis function method for solving option price models, Financ. Eng. 8 (1999), pp. 31–49.
  • J.C. Hull, Options, Futures, and Other Derivatives, 4th ed., Prentice–Hall, Upper Saddle River, NJ, 2000.
  • S. Ikonen and J. Toivanen, Operator splitting methods for American option pricing, Appl. Math. Lett. 17 (2004), pp. 809–814. doi: 10.1016/j.aml.2004.06.010
  • N. Ju, Pricing an American option by approximating its early exercise boundary as multipiece exponential function, Rev. Financ. Stud. 11 (2003), pp. 627–646. doi: 10.1093/rfs/11.3.627
  • M.K. Kadalbajoo, L.P. Tripathi, and A. Kumar, A cubic B-spline collocation method for a numerical solution of the generalized Black–Scholes equation, Math. Comput. Model. 55 (2012), pp. 1483–1505. doi: 10.1016/j.mcm.2011.10.040
  • M.K. Kadalbajoo, A. Kumar, and L.P. Tripathi, Application of radial basis function with L-stable Padé time marching scheme for pricing exotic option, Comput. Math. Appl. 66 (2013), pp. 500–511. doi: 10.1016/j.camwa.2013.06.002
  • A.Q.M. Khaliq, D.A. Voss, and S.H.K. Kazmi, A linearly implicit predictor–corrector scheme for pricing American options using a penalty method approach, J. Bank. Financ. 30 (2006), pp. 489–502. doi: 10.1016/j.jbankfin.2005.04.017
  • A.Q.M. Khaliq, D.A. Voss, and S.H.K. Kazmi, Adaptive θ−methods for pricing American options, J. Comput. Appl. Math. 222 (2008), pp. 210–227. doi: 10.1016/j.cam.2007.10.035
  • A. La Rocca, A. Hernandez Rosales, and H. Power, Radial basis function Hermit collocation approach for the solution of time dependent convection diffusion problems, Eng. Anal. Boundary Elem. 29 (2005), pp. 359–370. doi: 10.1016/j.enganabound.2004.06.005
  • E. Larsson, K. Ahlander, and A. Hall, Multi-dimensional option pricing radial basis functions and the generalized Fourier transform, J. Comput. Appl. Math. 222 (2008), pp. 175–192. doi: 10.1016/j.cam.2007.10.039
  • C.K. Lee, X. Liu, and S. C. Fan, Local multiquadratic approximation for solving boundary value problems, Comput. Mech. 30 (2003), pp. 396–409. doi: 10.1007/s00466-003-0416-5
  • X. Liu and K. Tai, Point interpolation collocation method for the solution of partial differential equations, Eng. Anal. Boundary Elem. 30 (2006), pp. 598–609. doi: 10.1016/j.enganabound.2005.12.003
  • M.D. Marcozzi, S. Choi, and C.S. Chen, On the use of boundary condition for variational formulation arising in financial mathematics, Appl. Math. Comput. 124 (2001), pp. 197–214. doi: 10.1016/S0096-3003(00)00087-4
  • B.F. Nielsen, O. Skavhaug, and A. Tveito, Penalty and font-fixing methods for the numerical solution of American option probles, J. Comput. Financ. 5 (2002), pp. 69–97.
  • B.F. Nielsen, O. Skavhaug, and A. Tveito, Penalty method for the numerical solution of American multi-asset option probles, J. Comput. Appl. Math. 222 (2008), pp. 3–16. doi: 10.1016/j.cam.2007.10.041
  • U. Pettersson, E. Larsson, G. Marcusson, and J. Persson, Improved radial basis function methods for multi-dimensional option pricing, J. Comput. Appl. Math. 222 (2008), pp. 82–93. doi: 10.1016/j.cam.2007.10.038
  • V.S.S.Y. Sanyasiraju and G. Chandhini, Local radial basis function based gridfree scheme for unsteady incompressible viscous flows, J. Comput. Phys. 227 (20) (2008), pp. 8922–8948. doi: 10.1016/j.jcp.2008.07.004
  • C. Shu, H. Ding, and K.S. Yeo, Local radial basis function based differential quadrature methods and its application to solve two dimensional incompressible Navier–Stokes equations, Comput. Methods Appl. Mech. Eng. 192 (2003), pp. 941–954. doi: 10.1016/S0045-7825(02)00618-7
  • G.B. Wright and B. Fornberg, Scattered node compact finite difference type formulas generated from radial basis functions, J. Comput. Phys. 212 (2006), pp. 99–123. doi: 10.1016/j.jcp.2005.05.030
  • M. Zerroukat, H. Power, and C.S. Chen, A numercical method for heat transfer problem using collocation and radial basis function, Int. J. Numer. Methods Eng. 42 (1998), pp. 1263–1278. doi: 10.1002/(SICI)1097-0207(19980815)42:7<1263::AID-NME431>3.0.CO;2-I

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.