71
Views
1
CrossRef citations to date
0
Altmetric
SECTION B

An integro-differential generalization and dynamically consistent discretizations of some hyperbolic models with nonlinear damping

Pages 2109-2120 | Received 14 May 2014, Accepted 31 Aug 2014, Published online: 08 Oct 2014

References

  • G. Abramson, A.R. Bishop, and V.M. Kenkre, Effects of transport memory and nonlinear damping in a generalized Fisher's equation, Phys. Rev. E 64 (2001), p. 066615. doi: 10.1103/PhysRevE.64.066615
  • K.S. Berenhauta, J.D. Foleya, and S. Stevicb, Boundedness character of positive solutions of a higher order difference equation, Int. J. Comput. Math. 87 (2010), pp. 1431–1435. doi: 10.1080/00207160802283039
  • E.S. Fahmy, Travelling wave solutions for some time-delayed equations through factorizations, Chaos Solitons Fractals 38 (2008), pp. 1209–1216. doi: 10.1016/j.chaos.2007.02.007
  • E.G. Fan, Traveling wave solutions for nonlinear equations using symbolic computation, Comput. Math. Appl. 43 (2002), pp. 671–680. doi: 10.1016/S0898-1221(01)00312-1
  • R.A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics 7 (1937), pp. 355–369. doi: 10.1111/j.1469-1809.1937.tb02153.x
  • R. FitzHugh, Mathematical models of threshold phenomena in the nerve membrane, Bull. Math. Biol. 17 (1955), pp. 257–278.
  • D. Furihata, Finite-difference schemes for nonlinear wave equation that inherit energy conservation property, J. Comput. Appl. Math. 134 (2001), pp. 37–57. doi: 10.1016/S0377-0427(00)00527-6
  • H.N.A. Ismail, K. Raslan, and A.A. Abd Rabboh, Adomian decomposition method for Burger's–Huxley and Burger's–Fisher equations, Appl. Math. Comput. 159 (2004), pp. 291–301. doi: 10.1016/j.amc.2003.10.050
  • W.E. Kastenberg and P.L. Chambré, On the stability of nonlinear space-dependent reactor kinetics, Nucl. Sci. Eng. 31 (1968), pp. 67–79.
  • A. Kolmogorov, I. Petrovsky, and N. Piscounov, Étude de l’équations de la diffusion avec croissance de la quantité de matière et son application a un problème biologique, Bull. Univ. Moskou, Ser. Internat. 1A (1937), pp. 1–25.
  • J.E. Macías-Díaz, Sufficient conditions for the preservation of the boundedness in a numerical method for a physical model with transport memory and nonlinear damping, Comput. Phys. Commun. 182 (2011), pp. 2471–2478. doi: 10.1016/j.cpc.2011.07.005
  • J.E. Macías-Díaz, A bounded numerical method for approximating a hyperbolic and convective generalization of Fishers model with nonlinear damping, Appl. Math. Lett. 25 (2012), pp. 946–951. doi: 10.1016/j.aml.2011.11.002
  • J.E. Macías-Díaz, On a boundedness-preserving semi-linear discretization of a two-dimensional nonlinear diffusion–reaction model, Int. J. Comput. Math. 89 (2012), pp. 1678–1688. doi: 10.1080/00207160.2012.690512
  • J.E. Macías-Díaz and A. Puri, A boundedness-preserving finite-difference scheme for a damped nonlinear wave equation, Appl. Numer. Math. 60 (2010), pp. 934–948. doi: 10.1016/j.apnum.2010.05.008
  • J.E. Macías-Díaz and A. Puri, On some explicit non-standard methods to approximate nonnegative solutions of a weakly hyperbolic equation with logistic nonlinearity, Int. J. Comput. Math. 88 (2011), pp. 3308–3323. doi: 10.1080/00207160.2011.592939
  • J.E. Macías-Díaz and A. Puri, An explicit positivity-preserving finite-difference scheme for the classical Fisher–Kolmogorov–Petrovsky–Piscounov equation, Appl. Math. Comput. 218 (2012), pp. 5829–5837. doi: 10.1016/j.amc.2011.11.064
  • J.E. Macías-Díaz and J. Ruiz-Ramírez, A non-standard symmetry-preserving method to compute bounded solutions of a generalized Newell–Whitehead–Segel equation, Appl. Numer. Math. 61 (2011), pp. 630–640. doi: 10.1016/j.apnum.2010.12.008
  • J.E. Macías-Díaz, J. Ruiz-Ramírez, and J. Villa, The numerical solution of a generalized Burgers–Huxley equation through a conditionally bounded and symmetry-preserving method, Comput. Math. Appl. 61 (2011), pp. 3330–3342. doi: 10.1016/j.camwa.2011.04.022
  • R.E. Mickens, Dynamic consistency: A fundamental principle for constructing nonstandard finite difference schemes for differential equations, J. Difference Equ. Appl. 11 (2005), pp. 645–653. doi: 10.1080/10236190412331334527
  • R.C. Mittal and G. Arora, Efficient numerical solution of Fisher's equation by using B-spline method, Int. J. Comput. Math. 87 (2010), pp. 3039–3051. doi: 10.1080/00207160902878555
  • R.K. Mohanty, New unconditionally stable difference schemes for the solution of multi-dimensional telegraphic equations, Int. J. Comput. Math. 86 (2009), pp. 2060–2071.
  • J. Nagumo, S. Arimoto, and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proceedings of the IRE, 50, 1962, pp. 2061–2070. doi: 10.1109/JRPROC.1962.288235
  • A.C. Newell and J.A. Whitehead, Stability of stationary periodic structures for weakly supercritical convection and related problems, J. Fluid Mech. 38 (1969), pp. 279–303. doi: 10.1017/S0022112069000176
  • E.I. Rashba and M.D. Sturge (eds.), Excitons, Birman J. L., North Holland, Amsterdam, 1982.
  • J. Ruiz-Ramírez and J.E. Macías-Díaz, A finite-difference scheme to approximate non-negative and bounded solutions of a FitzHugh–Nagumo equation, Int. J. Comput. Math. 88 (2011), pp. 3186–3201. doi: 10.1080/00207160.2011.579964
  • L.A. Segel, Distant side-walls cause slow amplitude modulation of cellular convection, J. Fluid Mech. 38 (1969), pp. 203–224. doi: 10.1017/S0022112069000127
  • J.A. Sherratt and J.D. Murray, Models of epidermal wound healing, Proc. Biol. Sci. 241 (1990), pp. 29–36. doi: 10.1098/rspb.1990.0061
  • A. Szafrańska and J.E. Macías-Díaz, On the convergence of a finite-difference discretization à la Mickens of the generalized Burgers–Huxley equation, J. Difference Equ. Appl. 20 (2014), pp. 1444–1451. doi: 10.1080/10236198.2014.936319
  • S. Tomasiello, Numerical solutions of the Burgers–Huxley equation by the IDQ method, Int. J. Comput. Math. 87 (2010), pp. 129–140. doi: 10.1080/00207160801968762
  • P.R. Wallace, Mathematical Analysis of Physical Problems, 1st ed., Dover, New York, 1984.
  • X.Y. Wang, Exact and explicit solitary wave solutions for the generalised Fisher equation, Phys. Lett. A 131 (1988), pp. 277–279. doi: 10.1016/0375-9601(88)90027-8
  • X.Y. Wang, Z.S. Zhu, and Y.K. Lu, Solitary wave solutions of the generalised Burgers–Huxley equation, J. Phys. A, Math. Gen. 23 (1990), p. 271. doi: 10.1088/0305-4470/23/3/011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.