149
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Ecoepidemics with infected prey in herd defence: the harmless and toxic cases

&
Pages 108-127 | Received 28 Nov 2013, Accepted 08 Nov 2014, Published online: 16 Dec 2014

References

  • V. Ajraldi, M. Pittavino, and E. Venturino, Modelling herd behavior in population systems, Nonlinear Anal. Real World Appl. 12 (2011), pp. 2319–2338. doi: 10.1016/j.nonrwa.2011.02.002
  • W.E. Allen, Behavior of loon and sardines, Ecology 1 (1920), pp. 309–310. doi: 10.2307/1929565
  • R.M. Anderson and R.M. May, The invasion, persistence and spread of infectious diseases within animal and plant communities, Phil. Trans. R. Soc. Lond. B 314 (1986), pp. 533–570. doi: 10.1098/rstb.1986.0072
  • E. Beltrami and T.O. Carroll, Modelling the role of viral disease in recurrent phytoplankton blooms, J. Math. Biol. 32 (1994), pp. 857–863. doi: 10.1007/BF00168802
  • P.A. Braza, Predator–prey dynamics with square root functional responses, Nonlinear Anal. Real World Appl. 13(4) (2012), pp. 1837–1843. doi: 10.1016/j.nonrwa.2011.12.014
  • E. Cagliero and E. Venturino, Ecoepidemics with group defense and infected prey protected by the herd, in Proceedings of the 12th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE 2012, Vol. 1, J. Vigo-Aguiar, A.P. Buslaev, A. Cordero, M. Demiralp, I.P. Hamilton, E. Jeannot, V.V. Kozlov, M.T. Monteiro, J.J. Moreno, J.C. Reboredo, P. Schwerdtfeger, N. Stollenwerk, J.R. Torregrosa, E. Venturino, and J. Whiteman, eds., La Manga, Spain, July 2–5, 2012, pp. 247–266.
  • C. Cosner, D.L. DeAngelis, J.S. Ault, and D.B. Olson, Effects of spatial grouping on the functional response of predators, Theor. Population Biol. 56 (1999), pp. 65–75. doi: 10.1006/tpbi.1999.1414
  • K. pada Das, K. Kundu and J. Chattopadhyay, A predator–prey mathematical model with both the populations affected by diseases, Ecol. Complex. 8 (2011), pp. 68–80. doi: 10.1016/j.ecocom.2010.04.001
  • M. Delgado, M. Molina-Becerra, and A. Suarez, Relating disease and predation: equilibria of an epidemic model, Math. Methods Appl. Sci. 28 (2005), pp. 349–362. doi: 10.1002/mma.573
  • H.I. Freedman and G. Wolkowitz, Predator–prey systems with group defence: The paradox of enrichment revisited, Bull. Math. Biol. 48 (1986), pp. 493–508. doi: 10.1007/BF02462320
  • K.P. Hadeler and H.I. Freedman, Predator–prey populations with parasitic infection, J. Math. Biol. 27 (1989), pp. 609–631. doi: 10.1007/BF00276947
  • M. Haque, Ratio-dependent predator–prey models of interacting populations, Bull. Math. Biol. 71 (2009), pp. 430–452. doi: 10.1007/s11538-008-9368-4
  • Y. Hsieh and C. Hsiao, Predator–prey model with disease infection in both populations, Math. Med. Biol. 25 (2008), pp. 247–266. doi: 10.1093/imammb/dqn017
  • W.O. Kermack and A.G. McKendrick, Contributions to the mathematical theory of epidemics – I, Proc. R. Soc. Lond. A 115 (1927), pp. 700–721. doi: 10.1098/rspa.1927.0118
  • A.J. Lotka, Elements of Physical Biology, Williams and Wilkins, Baltimore, MD, 1925.
  • H. Malchow, S. Petrovskii, and E. Venturino, Spatiotemporal Patterns in Ecology and Epidemiology, CRC, Boca Raton, FL, 2008.
  • R.C. Miller, The significance of gregarious habit, Ecology 3 (1922), pp. 122–126. doi: 10.2307/1929145
  • D.H. Morse, Feeding behavior and predator avoidance in heterospecific groups, BioScience 27 (1977), pp. 332–339. doi: 10.2307/1297632
  • M. Ono, T. Igarashi and M. Sasaki, Unusual thermal defence by a honeybee against mass attach by hornets, Nature 377 (1995), pp. 334–336. doi: 10.1038/377334a0
  • R. Pal, D. Basu and M. Banerjee, Modelling of phytoplankton allelopathy with Monod–Haldane-type functional response – a mathematical study, Biosystems 95 (2009), pp. 243–253. doi: 10.1016/j.biosystems.2008.11.002
  • T.J. Pitcher and J.K. Parish, Functions of shoaling behaviour in teleosts, in Behaviour of Teleost Fishes, T.J. Pitcher, ed., Chapman and Hall, New York, 1993, pp. 363–440.
  • G. Turner and T. Pitcher, Attack abatement: A model for group protection by combined avoidance and dilution, Am. Nat. 128 (1986), pp. 228–240. doi: 10.1086/284556
  • E. Venturino, Epidemics in predator–prey models: Disease among the prey, in Mathematical Population Dynamics: Analysis of Heterogeneity, Vol. 1: Theory of Epidemics, O. Arino, D. Axelrod, M. Kimmel, and M. Langlais, eds., Wuertz Publishing Ltd, Winnipeg, 1995, pp. 381–393.
  • E. Venturino, Epidemics in predator–prey models: Disease in the predators, IMA J. Math. Appl. Med. Biol. 19 (2002), pp. 185–205. doi: 10.1093/imammb/19.3.185
  • E. Venturino, A minimal model for ecoepidemics with group defense, J. Biol. Syst. 19(4) (2011), pp. 763–785. doi: 10.1142/S0218339011004184
  • V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature 118 (1926), pp. 558–560. doi: 10.1038/118558a0
  • G. Wolkowitz, Bifurcation analysis of a predator–prey system involving group defence, SIAM J. Appl. Math. 48 (1988), pp. 592–606. doi: 10.1137/0148033

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.