427
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

A new algorithm based on differential transform method for solving multi-point boundary value problems

, &
Pages 981-994 | Received 09 Aug 2014, Accepted 18 Dec 2014, Published online: 17 Feb 2015

References

  • J. Ali, S. Islam, S. Islam, and G. Zaman, The solution of multipoint boundary value problems by the optimal homotopy asymptotic method, Comput. Math. Appl. 59 (2010), pp. 2000–2006. doi: 10.1016/j.camwa.2009.12.002
  • A. Arikoglu and I. Ozkol, Solution of boundary value problems for integro-differential equations by using differential transform method, Appl. Math. Comput. 168 (2005), pp. 1145–1158. doi: 10.1016/j.amc.2004.10.009
  • A. Arikoglu and I. Ozkol, Solution of difference equations by using differential transform method, Appl. Math. Comput. 174 (2006), pp. 1216–1228. doi: 10.1016/j.amc.2005.06.013
  • A. Arikoglu and I. Ozkol, Solution of differential-difference equations by using differential transform method, Appl. Math. Comput. 181 (2006), pp. 153–162. doi: 10.1016/j.amc.2006.01.022
  • A. Arikoglu and I. Ozkol, Solutions of integral and integro-differential equation systems by using differential transform method, Comput. Math. Appl. 56 (2008), pp. 2411–2417. doi: 10.1016/j.camwa.2008.05.017
  • J. Biazar and M. Eslami, Analytic solution for telegraph equation by differential transform method, Phys. Lett. A 374 (2010), pp. 2904–2906. doi: 10.1016/j.physleta.2010.05.012
  • S.-H. Chang and I.-L. Chang, A new algorithm for calculating one-dimensional differential transform of nonlinear functions, Appl. Math. Comput. 195 (2008), pp. 799–808. doi: 10.1016/j.amc.2007.05.026
  • S.-H. Chang and I.-L. Chang, A new algorithm for calculating two-dimensional differential transform of nonlinear functions, Appl. Math. Comput. 215 (2009), pp. 2486–2494. doi: 10.1016/j.amc.2009.08.046
  • M. Dehghan and F. Shakeri, A semi-numerical technique for solving the multi-point boundary value problems and engineering applications, Internat. J. Numer. Methods Heat Fluid Flow 21 (2011), pp. 794–809. doi: 10.1108/09615531111162783
  • J.-S. Duan, Recurrence triangle for Adomian polynomials, Appl. Math. Comput. 216 (2010), pp. 1235–1241. doi: 10.1016/j.amc.2010.02.015
  • J.-S. Duan, An efficient algorithm for the multivariable Adomian polynomials, Appl. Math. Comput.217 (2010), pp. 2456–2467. doi: 10.1016/j.amc.2010.07.046
  • J.-S. Duan, Convenient analytic recurrence algorithms for the Adomian polynomials, Appl. Math. Comput. 217 (2011), pp. 6337–6348. doi: 10.1016/j.amc.2011.01.007
  • P.W. Eloe and J. Henderson, Uniqueness implies existence and uniqueness conditions for nonlocal boundary value problems for nth order differential equations, J. Math. Anal. Appl. 331 (2007), pp. 240–247. doi: 10.1016/j.jmaa.2006.08.087
  • V.S. Ertürk and S. Momani, Comparing numerical methods for solving fourth-order boundary value problems, Appl. Math. Comput. 188 (2007), pp. 1963–1968. doi: 10.1016/j.amc.2006.11.075
  • H. Fatoorehchi and H. Abolghasemi, Computation of analytical Laplace transforms by the differential transform method, Math. Comput. Modelling. 56 (2012), pp. 145–151. doi: 10.1016/j.mcm.2011.11.063
  • H. Fatoorehchi and H. Abolghasemi, Improving the differential transform method: A novel technique to obtain the differential transforms of nonlinearities by the Adomian polynomials, Appl. Math. Model. 37 (2013), pp. 6008–6017. doi: 10.1016/j.apm.2012.12.007
  • H. Fatoorehchi and H. Abolghasemi, An explicit analytic solution to the Thomas-Fermi equation by the improved differenitial transform method, Acta Phys. Polon. A 125 (2014), pp. 1083–1087. doi: 10.12693/APhysPolA.125.1083
  • W. Feng and J.R.L. Webb, Solvability of m-point boundary value problems with nonlinear growth, J. Math. Anal. Appl. 212 (1997), pp. 467–480. doi: 10.1006/jmaa.1997.5520
  • F.Z. Geng, Solving singular second order three-point boundary value problems using reproducing kernel Hilbert space method, Appl. Math. Comput. 215 (2009), pp. 2095–2102. doi: 10.1016/j.amc.2009.08.002
  • F.Z. Geng, A numerical algorithm for nonlinear multi-point boundary value problems, J. Comput. Appl. Math. 236 (2012), pp. 1789–1794. doi: 10.1016/j.cam.2011.10.010
  • F.Z. Geng and M.G. Cui, Multi-point boundary value problem for optimal bridge design, Int. J. Comput. Math. 87 (2010), pp. 1051–1056. doi: 10.1080/00207160903023573
  • A. Gökdoğan, M. Merdan, and A. Yildirim, The modified algorithm for the differential transform method to solution of Genesio systems, Commun. Nonlinear Sci. 17 (2012), pp. 45–51. doi: 10.1016/j.cnsns.2011.03.039
  • J.R. Graef and J.R.L. Webb, Third order boundary value problems with nonlocal boundary conditions, Nonlinear Anal. Theor. 71 (2009), pp. 1542–1551. doi: 10.1016/j.na.2008.12.047
  • J.R. Graef, L.J. Kong, and Q.K. Kong, Higher order multi-point boundary value problems, Math. Nachr. 284 (2011), pp. 39–52. doi: 10.1002/mana.200710179
  • C.P. Gupta, Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equation, J. Math. Anal. Appl. 168 (1992), pp. 540–551. doi: 10.1016/0022-247X(92)90179-H
  • J. Henderson and C.J. Kunkel, Uniqueness of solutions of linear nonlocal boundary value problems, Appl. Math. Lett. 21 (2008), pp. 1053–1056. doi: 10.1016/j.aml.2006.06.024
  • J. Henderson and R. Luca, Positive solutions for singular systems of multi-point boundary value problems, Math. Methods Appl. Sci. 36 (2013), pp. 814–828. doi: 10.1002/mma.2628
  • M.K. Kwong, The shooting method and multiple solutions of two/multi-point BVPs of second-order ODE, Electron. J. Qual. Theory Differ. Equ. 6 (2006), pp. 1–14.
  • M. Lentini and V. Pereyra, A variable order finite difference method for nonlinear multipoint boundary value problems, Math. Comput. 28 (1974), pp. 981–1003. doi: 10.1090/S0025-5718-1974-0386281-4
  • X.Y. Li and B.Y. Wu, Reproducing kernel method for singular fourth order four-point boundary value problems, Bull. Malays. Math. Sci. Soc. 34 (2011), pp. 147–151.
  • X.Y. Li and B.Y. Wu, A novel method for nonlinear singular fourth order four-point boundary value problems, Comput. Math. Appl. 62 (2011), pp. 27–31. doi: 10.1016/j.camwa.2011.04.029
  • X.Y. Li and B.Y. Wu, Reproducing kernel method for singular multi-point boundary value problems, Math. Sci. 6 (2012), pp. 16–20. doi: 10.1186/2251-7456-6-16
  • Y.Z. Lin and M.G. Cui, A numerical solution to nonlinear multi-point boundary value problems in the reproducing kernel space, Math. Methods Appl. Sci. 34 (2011), pp. 44–47. doi: 10.1002/mma.1327
  • Y.Z. Lin and J.N. Lin, A numerical algorithm for solving a class of linear nonlocal boundary value problems, Appl. Math. Lett. 23 (2010), pp. 997–1002. doi: 10.1016/j.aml.2010.04.025
  • Y.Z. Lin, J. Niu, and M.G. Cui, A numerical solution to nonlinear second order three-point boundary value problems in the reproducing kernel space, Appl. Math. Comput. 218 (2012), pp. 7362–7368. doi: 10.1016/j.amc.2011.11.009
  • B. Liu, Solvability of multi-point boundary value problem at resonance - part IV, Appl. Math. Comput.143 (2003), pp. 275–299. doi: 10.1016/S0096-3003(02)00361-2
  • S. Momani and V.S. Ertürk, Solutions of non-linear oscillators by the modified differential transform method, Comput. Math. Appl. 55 (2008), pp. 833–842. doi: 10.1016/j.camwa.2007.05.009
  • S. Momani and M.A. Noor, Numerical comparison of methods for solving a special fourth-order boundary value problem, Appl. Math. Comput. 191 (2007), pp. 218–224. doi: 10.1016/j.amc.2007.02.081
  • A. Moradi, T. Hayat, and A. Alsaedi, Convection-radiation thermal analysis of triangular porous fins with temperature-dependent thermal conductivity by DTM, Energy Convers. Manage. 77 (2014), pp. 70–77. doi: 10.1016/j.enconman.2013.09.016
  • S. Mosayebidorcheh, Solution of the boundary layer equation of the power-law pseudoplastic fluid using differential transform method, Math. Probl. Eng. 2013 (2013), Article ID 685454, 8 pages. doi: 10.1155/2013/685454
  • S. Mosayebidorcheh, Analytical investigation of the micropolar flow through a porous channel with changing walls, J. Mol. Liq. 196 (2014), pp. 113–119. doi: 10.1016/j.molliq.2014.03.022
  • S. Mosayebidorcheh, D.D. Ganji, and M. Farzinpoor, Approximate solution of the nonlinear heat transfer equation of a fin with the power-law temperature-dependent thermal conductivity and heat transfer coefficient, Propul. Power Res. 3 (2014), pp. 41–47. doi: 10.1016/j.jppr.2014.01.005
  • M. Moshiinsky, Sobre los problems de condiciones a la frontiera en una dimension de caracteristicas discontinuas, Bol. Soc. Mat. Mexicana 7 (1950), pp. 1–25.
  • Z.M. Odibat, Differential transform method for solving Volterra integral equation with separable kernels, Math. Comput. Modelling 48 (2008), pp. 1144–1149. doi: 10.1016/j.mcm.2007.12.022
  • Z.M. Odibat, C. Bertelle, M.A. Aziz-Alaoui, and G.H.E. Duchamp, A multi-step differential transform method and application to non-chaotic or chaotic systems, Comput. Math. Appl. 59 (2010), pp. 1462–1472. doi: 10.1016/j.camwa.2009.11.005
  • G.E. Pukhov, Differential Transforms of Functions and Equations, Naukova Dumka, Kiev, 1980 (in Russian).
  • G.E. Pukhov, Differential transforms and circuit theory, Int. J. Circ. Theor. Appl. 10 (1982), pp. 265–276. doi: 10.1002/cta.4490100307
  • G.E. Pukhov, Differential Transformations and Mathematical Modeling of Physical Processes, Naukova Dumka, Kiev, 1986 (in Russian).
  • A. Saadatmandi and M. Dehghan, The use of Sinc-collocation method for solving multi-point boundary value problems, Commun. Nonlinear Sci. 17 (2012), pp. 593–601. doi: 10.1016/j.cnsns.2011.06.018
  • S. Salahshour and T. Allahviranloo, Application of fuzzy differential transform method for solving fuzzy Volterra integral equations, Appl. Math. Model. 37 (2013), pp. 1016–1027. doi: 10.1016/j.apm.2012.03.031
  • V.K. Srivastava and M.K. Awasthi, (1+n)-dimensional burgers' equation and its analytical solution: A comparative study of HPM, ADM and DTM, Ain Shams Eng. J. 5 (2014), pp. 533–541. doi: 10.1016/j.asej.2013.10.004
  • V.K. Srivastava, M.K. Awasthi, and S. Kumar, Numerical approximation for HIV infection of CD4+ T cells mathematical model, Ain Shams Eng. J. 5 (2014), pp. 625–629. doi: 10.1016/j.asej.2013.12.012
  • K. Suddoung, J. Charoensuk, and N. Wattanasakulpong, Vibration response of stepped FGM beams with elastically end constraints using differential transformation method, Appl. Acoust. 77 (2014), pp. 20–28. doi: 10.1016/j.apacoust.2013.09.018
  • M. Tatari and M. Dehghan, The use of the Adomian decomposition method for solving multipoint boundary value problems, Phys. Scripta 73 (2006), pp. 672–676. doi: 10.1088/0031-8949/73/6/023
  • M. Tatari and M. Dehghan, An efficient method for solving multi-point boundary value problems and applications in physics, J. Vib. Control 18 (2011), pp. 1116–1124. doi: 10.1177/1077546311408467
  • S. Timoshenko, Theory of Elastic Stability, McGraw-Hill, New York, 1961.
  • B.Y. Wu and X.Y. Li, A new algorithm for a class of linear nonlocal boundary value problems based on the reproducing kernel method, Appl. Math. Lett. 24 (2011), pp. 156–159. doi: 10.1016/j.aml.2010.08.036
  • Q.L. Yao, Successive iteration and positive solution for nonlinear second-order three-point boundary value problems, Comput. Math. Appl. 50 (2005), pp. 433–444. doi: 10.1016/j.camwa.2005.03.006
  • J.K. Zhou, Differential Transformation and its Applications for Electrical Circuits, Huazhong University Press, Wuhan China, 1986 (in Chinese).
  • Y.K. Zou, Q.W. Hu, and R. Zhang, On numerical studies of multi-point boundary value problem and its fold bifurcation, Appl. Math. Comput. 185 (2007), pp. 527–537. doi: 10.1016/j.amc.2006.07.064

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.