291
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

WEB-Spline-based mesh-free finite element approximation for p-Laplacian

, , &
Pages 1022-1043 | Received 02 May 2014, Accepted 29 Jan 2015, Published online: 12 Mar 2015

References

  • G. Apaydin, Finite Element Method with WEB-Splines for Electromagnetics, VDM Verlag, Saarbruecken, 2009.
  • M. Badiale and E. Serra, Semilinear Elliptic Equations for Beginners, Existence Results via the Variational Approach, Springer, London, 2011.
  • J. Baranger, K. Najib, and D. Sandri, Numerical analysis of a three-fields model for a quasi-Newtonian flow, Comput. Methods Appl. Mech. Engrg. 109 (1993), pp. 281–292. doi: 10.1016/0045-7825(93)90082-9
  • J.W. Barret and W.B. Liu, Finite element approximation of the p-Laplacian, Math. Comput. 61(204) (1993), pp. 523–537.
  • J.W. Barrett and W.B. Liu, Quasi-norm error bounds for the finite element approximation of a non-Newtonian flow, Numer. Math. 68(4) (1994), pp. 437–456. doi: 10.1007/s002110050071
  • J.W. Barrett and W.B. Liu, Finite element approximation of some degenerate monotone quasilinear elliptic systems, SIAM J. Numer. Anal. 33(1) (1996), pp. 88–106. doi: 10.1137/0733006
  • D. Braess, Finite Elements. Theory Fast Solvers, and Applications in Solid Mechanics, Cambridge University Press, Cambridge, 1997.
  • S. Chaudhary and V.V.K. Srinivas Kumar, A new class of stabilized WEB-Spline-based mesh-free finite elements for the approximation of Maxwell equations, Numer. Funct. Anal. Optim. 33(3) (2012), pp. 264–283. doi: 10.1080/01630563.2011.650306
  • S. Chaudhary and V.V.K. Srinivas Kumar, WEB-Spline based mesh-free finite element analysis for the heat equation and the time-dependent Navier–Stokes equation – a survey, Numer Methods Partial Differ Equ. 29(4) (2013), pp. 1322–1340. doi: 10.1002/num.21757
  • S.-S Chow, Finite element error estimates for non-linear elliptic equations of monotone type, Numer. Math. 54(4) (1989), pp. 373–393. doi: 10.1007/BF01396320
  • P.G Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
  • C. de Boor and G.J Fix, Spline approximation by quasi-interpolants, J. Approx. Theory. 8 (1973), pp. 19–45. doi: 10.1016/0021-9045(73)90029-4
  • M. Farhloul, A mixed finite element method for a nonlinear Dirichlet problem, I.MA J. Numer. Anal. 18 (1998), pp. 121–132. doi: 10.1093/imanum/18.1.121
  • M. Farhloul and H. Manouzi, On a mixed finite element method for the p-Laplacian, Can. Appl. Math. Q. 8 (2000), pp. 67–78. doi: 10.1216/camq/1008957338
  • V. Girault and P.A. Raviart, Finite Element Method for the Navier–Stokes Equations, Theory and Algorithms, Springer S.C.M.5, Berlin, 1986.
  • R. Glowinski and A. Marrocco, Sur l'approximation par elements finis d'ordre, un et la resolution, par penalisation-dualite, d'une classe de problemes de Dirichlet non lineaires, RAIRO Anal. Numer. 2 (1975), pp. 41–76.
  • K. Hollig, Finite Element with b-Splines, SIAM, Philadelphia, 2003.
  • K. Höllig, U. Reif, and J. Wipper, Weighted extended B-spline approximation of Dirichlet problems, SIAM J. Numer. Anal. 39 (2001), pp. 442–462. doi: 10.1137/S0036142900373208
  • K.-Y. Kim, Quasi-norm techniques for finite element approximation of p-Laplacian, Trends Math. Inf. Center Math. Sci. 9(2) (2006), pp. 61–69.
  • W.B. Liu and N.N. Yan, Quasi-norm local error estimators for p-Laplacian, SIAM J. Numer Anal. 39(1) (2001), pp. 100–127. doi: 10.1137/S0036142999351613
  • J.C. Nedelec, Mixed finite elements in R3, Numer. Math. 35 (1980), pp. 315–341. doi: 10.1007/BF01396415
  • P.A. Raviart and J.M. Thomas, A mixed finite element method for second order elliptic problems, Lect. Notes Math. 606 (1977), pp. 292–315. doi: 10.1007/BFb0064470
  • D. Sandri, Sur l'analyse nume´rique des e´coulements quasi-Newtoniens dont la viscosite´ suit la loi puissance ou la loi de carreau, M2AN. 27 (1993), pp. 131–155.
  • V.V.K. Srinivas Kumar, B.V. Rathish Kumar, and P.C. Das, A new class of stabilized mesh-free finite elements for the approximation of the Stokes problem, Numer Methods Partial Differ. Equ. 20 (2004), pp. 703–722. doi: 10.1002/num.20007
  • V.V.K. Srinivas Kumar, B.V. Rathish Kumar, and P.C. Das, Weighted extended B-spline method for the approximation of the stationary Stokes problem, J. Compt. Appl. Math. 186 (2006), pp. 335–348. doi: 10.1016/j.cam.2005.02.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.