4,105
Views
48
CrossRef citations to date
0
Altmetric
SECTION B

BENCHOP – The BENCHmarking project in option pricingFootnote

, , , , , , , , , , , , , , , , & show all
Pages 2361-2379 | Received 30 Jan 2015, Accepted 23 Jun 2015, Published online: 21 Sep 2015

References

  • M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing, Dover publications, New York, 1972.
  • L.B.G. Andersen, Efficient simulation of the Heston stochastic volatility model, Tech. rep., 2007.
  • T. Björk, Arbitrage Theory in Continuous Time, 3rd ed., Oxford University Press, New York, 2009.
  • F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ. 81 (1973), pp. 637–654. doi: 10.1086/260062
  • P. Carr, R. Jarrow, and R. Myneni, Alternative characterizations of American put options, Math. Finance 2 (1992), pp. 87–106. doi: 10.1111/j.1467-9965.1992.tb00040.x
  • P. Carr and D. Madan, Option valuation using the fast Fourier transform, J. Comput. Finance 2 (1999), pp. 61–73.
  • P. Carr, H. Geman, D. Madan, L. Wu, and M. Yor, Option Pricing Using Integral Transforms, 2003, a slideshow presentation available at: http://www.math.nyu.edu/research/carrp/papers/pdf/integtransform.pdf.
  • R. Chan, Pricing options under jump-diffusion models by adaptive radial basis functions, Tech. rep., University of Bath, Department of Economics, 2010, Bath Economics Research Working papers; 06/10.
  • R. Cont, Empirical properties of asset returns: stylized facts and statistical issues, Quant. Finance 1 (2001), pp. 223–236. doi: 10.1080/713665670
  • B. Dupire, Pricing with a smile, Risk 7 (1994), pp. 18–20.
  • F. Fang and C.W. Oosterlee, A novel pricing method for European options based on Fourier-cosine series expansions, SIAM J. Sci. Comput. 31 (2008), pp. 826–848. doi: 10.1137/080718061
  • F. Fang and C.W. Oosterlee, Pricing early-exercise and discrete barrier options by Fourier-cosine series expansions, Numer. Math. 114 (2009), pp. 27–62. doi: 10.1007/s00211-009-0252-4
  • N. Flyer, E. Lehto, and S. Blaise, A guide to RBF-generated finite differences for nonlinear transport: Shallow water simulations on a sphere, J. Comput. Phys. 231 (2012), pp. 4078–4095. Available at http://www.sciencedirect.com/science/article/pii/S0021999112000587http://www.sciencedirect.com/science/article/pii/S0021999112000587. doi: 10.1016/j.jcp.2012.01.028
  • B. Fornberg and E. Lehto, Stabilization of RBF-generated finite difference methods for convective PDEs, J. Comput. Phys. 230 (2011), pp. 2270–2285. Available at http://www.sciencedirect.com/science/article/pii/S0021999110006789http://www.sciencedirect.com/science/article/pii/S0021999110006789. doi: 10.1016/j.jcp.2010.12.014
  • J. Gatheral and A. Jacquier, Arbitrage-free SVI volatility surfaces, Quant. Finance 14 (2014), pp. 59–71. doi: 10.1080/14697688.2013.819986
  • P. Glasserman, Monte Carlo Methods in Financial Engineering, Applications of mathematics: stochastic modelling and applied probability, Springer, 2004. Available at http://books.google.se/books?id=e9GWUsQkPNMC.
  • P. Glasserman and J. Staum, Conditioning on one-step survival for barrier option simulations, Oper. Res. 49 (2001), pp. 923–937. Available at http://dx.doi.org/10.1287/opre.49.6.923.10018. doi: 10.1287/opre.49.6.923.10018
  • G.H. Golub and J.H. Welsch, Calculation of Gauss quadrature rules, Math. Comp. 23 (1969), pp. 221–230+s1–s10. doi: 10.1090/S0025-5718-69-99647-1
  • E. Hairer, S. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, Solving Ordinary Differential Equations, Springer, 2008. Available at https://books.google.se/books?id=cfZDAAAAQBAJ.
  • S.L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financial Stud. 6 (1993), pp. 327–343. doi: 10.1093/rfs/6.2.327
  • L.J. Höök, T. Johnson, and T. Hellsten, Randomized quasi-Monte Carlo simulation of fast-ion thermalization, Comput. Sci. Disc. 5 (2012), pp. 014010. Available at http://stacks.iop.org/1749-4699/5/i=1/a=014010. doi: 10.1088/1749-4699/5/1/014010
  • S. Ikonen and J. Toivanen, Operator splitting methods for American option pricing, Appl. Math. Lett. 17 (2004), pp. 809–814. Available at http://dx.doi.org/10.1016/j.aml.2004.06.010. doi: 10.1016/j.aml.2004.06.010
  • S. Ikonen and J. Toivanen, Pricing American options using LU decomposition, Appl. Math. Sci. 1 (2007), pp. 2529–2551.
  • A. Iske and J. Behrens, Grid-free adaptive semi-Lagrangian advection using radial basis functions, Comput. Math. Appl. 43 (2002), pp. 319–327. doi: 10.1016/S0898-1221(01)00289-9
  • A. Iske and J. Levesley, Multilevel scattered data approximation by adaptive domain decomposition, 39 (2005), pp. 187–198.
  • E. Larsson, Option pricing using the discontinuous Galerkin method for time-integration, Tech. rep., Department of Information Technology, Uppsala University, 2013.
  • E. Larsson and S.M. Gomes, A Least Squares Multi-Level Radial Basis Function Method with Applications in Finance, 2015, manuscript in preparation.
  • E. Larsson, S. Gomes, A. Heryudono, and A. Safdari-Vaighani, Radial basis function methods in computational finance, in Proc. CMMSE 2013, Almería, Spain, 12pp., 2013.
  • M. Lauko and D. Ševčovič, Comparison of numerical and analytical approximations of the early exercise boundary of American put options, ANZIAM J. 51 (2010), pp. 430–448. Available at http://dx.doi.org/10.1017/S1446181110000854. doi: 10.1017/S1446181110000854
  • Q.T. Le Gia, I.H. Sloan, and H. Wendland, Multiscale approximation for functions in arbitrary Sobolev spaces by scaled radial basis functions on the unit sphere, Appl. Comput. Harmon. Anal. 32 (2012), pp. 401–412. doi: 10.1016/j.acha.2011.07.007
  • R.W. Lee, Option pricing by transform methods: Extensions, unification, and error control, J. Comput. Finance 7 (2004), pp. 51–86, an augmented version is available at http://www.math.uchicago.edu/~rl/dft.pdf.
  • E. Lindström, H. Madsen, and J. Nielsen, Statistics for Finance, Chapman & Hall/CRC Texts in Statistical Science, Taylor & Francis, 2015.
  • E. Lindström and H. Wu, A Fourier method for valuation of options under parameter uncertainty, submitted for publication.
  • E. Lindström, J. Ströjby, M. Brodén, M. Wiktorsson, and J. Holst, Sequential calibration of options, Tech. Rep. 2006:21, Centre for Mathemtical Sciences, Lund University, 2006.
  • E. Lindström, J. Ströjby, M. Brodén, M. Wiktorsson, and J. Holst, Sequential calibration of options, Comput. Statist. Data Anal. 52 (2008), pp. 2877–2891. doi: 10.1016/j.csda.2007.08.009
  • F.A. Longstaff and E.S. Schwartz, Valuing American options by simulation: A simple least-squares approach, Rev. Financ. Stud. 14 (2001), pp. 113–147. Available at http://rfs.oxfordjournals.org/content/14/1/113.abstract. doi: 10.1093/rfs/14.1.113
  • R. Lord and C. Kahl, Optimal fourier inversion in semi-analytical option pricing, J. Comput. Finance 10 (2007), pp. 1–30.
  • W. Margrabe, The value of an option to exchange one asset for another, J. Finance 33 (1978), pp. 177–186. doi: 10.1111/j.1540-6261.1978.tb03397.x
  • R.C. Merton, Theory of rational option pricing, Bell J. Econom. Man. Sci. 4 (1973), pp. 141–183. doi: 10.2307/3003143
  • R.C. Merton, Option pricing when underlying stock returns are discontinuous, J. Financial Econ. 3 (1976), pp. 125–144. doi: 10.1016/0304-405X(76)90022-2
  • S. Milovanović and L. von Sydow, Radial basis function generated finite differences for option pricing problems, 2015. Manuscript in preparation.
  • K.-S. Moon, Efficient Monte Carlo algorithm for pricing barrier options, Commun. Korean Math. Soc. 23 (2008), pp. 285–294. doi: 10.4134/CKMS.2008.23.2.285
  • S.L. Naqvi, Adaptive radial basis function interpolation for time-dependent partial differential equation, Ph.D. thesis, University of Leicester, 2013.
  • H. Niederreiter, Constructions of (t,m,s)–nets and (t,s)–sequences, Finite Fields Appl. 11 (2005), pp. 578–600. Available at http://www.sciencedirect.com/science/article/pii/S1071579705000043. doi: 10.1016/j.ffa.2005.01.001
  • P. Nystrup, H. Madsen, and E. Lindström, Stylized Facts of Financial Time Series and Hidden Markov Models in Continuous Time, Quant. Finance, 2015.
  • J. Persson and L. von Sydow, Pricing European multi-asset options using a space-time adaptive FD-method, Comput. Vis. Sci. 10 (2007), pp. 173–183. doi: 10.1007/s00791-007-0072-y
  • J. Persson and L. von Sydow, Pricing American options using a space-time adaptive finite difference method, Math. Comput. Simulation 80 (2010), pp. 1922–1935. doi: 10.1016/j.matcom.2010.02.008
  • U. Pettersson, E. Larsson, G. Marcusson, and J. Persson, Improved radial basis function methods for multi-dimensional option pricing, J. Comput. Appl. Math. 222 (2008), pp. 82–93. doi: 10.1016/j.cam.2007.10.038
  • O. Pironneau, On the transport-diffusion algorithm and its applications to the Navier-Stokes equations, Numer. Math. 38 (1981/82), pp. 309–332. Available at http://dx.doi.org/10.1007/BF01396435. doi: 10.1007/BF01396435
  • E. Platen and N. Bruti-Liberati, Numerical Solution of Stochastic Differential Equations with Jumps in Finance, Stochastic Modelling and Applied Probability, Vol. 64, Springer-Verlag, Berlin, 2010.
  • R. Rannacher, Finite element solution of diffusion problems with irregular data, Numer. Math. 43 (1984), pp. 309–327. doi: 10.1007/BF01390130
  • M.J. Ruijter and C.W. Oosterlee, Two-dimensional Fourier cosine series expansion method for pricing financial options, SIAM J. Sci. Comput. 34 (2012), pp. B642–B671. doi: 10.1137/120862053
  • M.J. Ruijter and C.W. Oosterlee, Numerical Fourier method and second-order Taylor scheme for backward SDEs in finance, Working paper available at SSRN, submitted for publication, 2014.
  • A. Safdari-Vaighani, A. Heryudono, and E. Larsson, A radial basis function partition of unity collocation method for convection–diffusion equations arising in financial applications, J. Sci. Comp. (2014), pp. 1–27.
  • S. Salmi and J. Toivanen, IMEX schemes for pricing options under jump-diffusion models, Appl. Numer. Math. 84 (2014), pp. 33–45. Available at http://dx.doi.org/10.1016/j.apnum.2014.05.007. doi: 10.1016/j.apnum.2014.05.007
  • S. Salmi, J. Toivanen, and L. von Sydow, An IMEX-scheme for pricing options under stochastic volatility models with jumps, SIAM J. Sci. Comput. 36 (2014), pp. B817–B834. Available at http://dx.doi.org/10.1137/130924905. doi: 10.1137/130924905
  • V. Shcherbakov and E. Larsson, Radial basis function partition of unity methods for pricing vanilla basket options, Tech. Rep. 2015-001, Division of Scientific Computing, Department of Information Technology, Uppsala University, 2015.
  • A.I. Tolstykh and D.A. Shirobokov, On using radial basis functions in a ‘finite difference mode’ with applications to elasticity problems, Comput. Mech. 33 (2003), pp. 68–79. doi: 10.1007/s00466-003-0501-9
  • A. Toropov, D. Ivanov, and Y. Shpolyanskiy, Application of theoretical options pricing to algorithmic trading strategies, Sci. Tech. J. Infor. Tech. Mech. Opt. (2013), pp. 136–141.
  • A. Townsend and H. Wendland, Multiscale analysis in Sobolev spaces on bounded domains with zero boundary values, IMA J. Numer. Anal. 33 (2013), pp. 1095–1114. doi: 10.1093/imanum/drs036
  • R. Villiger, Valuation of American call options, Wilmott Magazine 3 (2006), pp. 64–67.
  • L. von Sydow, On discontinuous Galerkin for time integration in option pricing problems with adaptive finite differences in space, in Numerical Analysis and Applied Mathematics: ICNAAM 2013, AIP Conference Proceedings, vol. 1558, American Institute of Physics (AIP), Melville, NY, 2013, pp. 2373–2376.
  • X. Wang, Finite differences based on radial basis functions to price options, Master's thesis, Uppsala University, 2014.
  • P. Wilmott, On Quantitative Finance, 2nd ed., John Wiley & Sons Ltd., Chichester, 2006.
  • G.G.B. Wright and B. Fornberg, Scattered node compact finite difference-type formulas generated from radial basis functions, J. Comput. Phys. 212 (2006), pp. 99–123. Available at http://www.sciencedirect.com/science/article/pii/S0021999105003116http://www.sciencedirect.com/science/article/pii/S0021999105003116. doi: 10.1016/j.jcp.2005.05.030

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.