126
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Ordering connected graphs by their Kirchhoff indices

, &
Pages 1741-1755 | Received 20 May 2015, Accepted 11 Jul 2015, Published online: 10 Aug 2015

References

  • D. Babic, D.J. Klein, I. Lukovits, S. Nikolić, and N. Trinajstić, Resistance-distance matrix: A computational algorithm and its application, Int. J. Quantum Chem. 90 (2002), pp. 166–176. doi: 10.1002/qua.10057
  • R.B. Bapat, I. Gutman, and W.J. Xiao, A simple method for computing resistance distance, Z. Naturforsch. 58a (2003), pp. 494–498.
  • P. Biler and A. Witkowski, Problems in Mathematical Analysis, Marcel Dekker, New York, NY, 1990.
  • D. Bonchev, A.T. Balaban, X. Liu, and D.J. Klein, Molecular cyclicity and centricity of polycyclic graphs. I. Cyclicity based on resistance distances or reciprocal distances, Int. J. Quantum Chem. 50 (1994), pp. 1–20. doi: 10.1002/qua.560500102
  • J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, American Elsevier Publishing Co. Inc., New York, NY, 1976.
  • D. Cvetković, M. Doob, and H. Sachs, Spectra of Graphs-Theory and Application, 3rd ed., Johann Ambrosius Barth, Heidelberg, 1995.
  • K.C. Das, An improved upper bound for Laplacian graph eigenvalues, Linear Algebra Appl. 368 (2003), pp. 269–278. doi: 10.1016/S0024-3795(02)00687-0
  • K.C. Das, On Kirchhoff index of graphs, Z. Naturforsch. 68a (2013), pp. 531–538.
  • K.C. Das, A.D. Güngör, and A. Sinan Çevik, On the Kirchhoff index and the resistance-distance energy of a graph, MATCH Commun. Math. Comput. Chem. 67 (2012), pp. 541–556.
  • K.C. Das, K. Xu, and I. Gutman, Comparison between Kirchhoff index and the Laplacian-energy-like invariant, Linear Algebra Appl. 436 (2012), pp. 3661–3671. doi: 10.1016/j.laa.2012.01.002
  • L. Feng, G. Yu, K. Xu, and Z. Jiang, A note on the Kirchhoff index of bicyclic graphs, Ars Combin. 114 (2014), pp. 33–40.
  • L. Feng, K. Xu, K.C. Das, A. Ilić, and G. Yu, The number of spanning trees of a graph with given matching number, Int. J. Comput. Math. doi:10.1080/00207160.2015.1021341.
  • R. Grone, R. Merris, and V.S. Sunder, The Laplacian spectrum of a graph, SIAM J. Matrix Anal. Appl. 11 (1990), pp. 218–238. doi: 10.1137/0611016
  • I. Gutman and B. Mohar, The quasi-Wiener and the Kirchhoff indices coincide, J. Chem. Inf. Comput. Sci. 36 (1996), pp. 982–985. doi: 10.1021/ci960007t
  • A. Ilić, D. Krtinić, and M. Ilić, On Laplacian like energy of trees, MATCH Commun. Math. Comput. Chem. 64 (2010), pp. 111–122.
  • A.K Kelmans and V.M Chelnokov, A certain polynomial of a graph and graphs with an extremal number of trees, J. Combin. Theory B. 16 (1974), pp. 197–214. doi: 10.1016/0095-8956(74)90065-3
  • D.J. Klein, Graph geometry, graph metrics, and Wiener, MATCH Commun. Math. Comput. Chem. 35 (1997), pp. 7–27.
  • D.J. Klein and M. Randić, Resistance distance, J. Math. Chem. 12 (1993), pp. 81–95. doi: 10.1007/BF01164627
  • M. Liu, B. Liu, and Q. Li, Erratum to ‘The trees on n>9 vertices with the first to seventeenth greatest Wiener indices are chemical trees’, MATCH Commun. Math. Comput. Chem. 64 (2010), pp. 743–756.
  • J.-B. Liu, X.-F. Pan, F.-T. Hu, and F.-F. Hu, Asymptotic Laplacian-energy-like invariant of lattices, Appl. Math. Comput. 253 (2015), pp. 205–214. doi: 10.1016/j.amc.2014.12.035
  • I. Lukovits, S. Nikolić, and N. Trinajstić, Resistance distance in regular graphs, Int. J. Quantum Chem. 71 (1999), pp. 217–225. doi: 10.1002/(SICI)1097-461X(1999)71:3<217::AID-QUA1>3.0.CO;2-C
  • R. Merris, Laplacian matrices of graphs: A survey, Linear Algebra Appl. 197/198 (1994), pp. 143–176. doi: 10.1016/0024-3795(94)90486-3
  • J.L. Palacios, Closed-form formulas for Kirchhoff index, Int. J. Quantum Chem. 81 (2001), pp. 29–33. doi: 10.1002/1097-461X(2001)81:1<29::AID-QUA6>3.0.CO;2-Y
  • J.L. Palacios, Resistance distance in graphs and random walks, Int. J. Quantum Chem. 81 (2001), pp. 135–140. doi: 10.1002/1097-461X(2001)81:2<135::AID-QUA4>3.0.CO;2-G
  • J.L. Palacios, Foster's formulas via probability and the Kirchhoff index, Methodol. Comput. Appl. Probab. 6 (2004), pp. 381–387. doi: 10.1023/B:MCAP.0000045086.76839.54
  • J.L. Palacios, On the Kirchhoff index of graphs with diameter 2, Discrete Appl. Math. 184 (2015), pp. 196–201. doi: 10.1016/j.dam.2014.11.010
  • S. Pirzada, H.A. Ganie, and I. Gutman, On Laplacian-energy-like invariant and Kirchhoff index, MATCH Commun. Math. Comput. Chem. 73 (2015), pp. 41–59.
  • H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947), pp. 17–20. doi: 10.1021/ja01193a005
  • K. Xu and K.C. Das, Extremal Laplacian-energy-like invariant of graphs with given matching number, Elect. J. Linear Algebra 26 (2013), pp. 131–140.
  • K. Xu, M. Liu, K.C. Das, I. Gutman, and B. Furtula, A survey on graphs extremal with respect to distance-based topological indices, MATCH Commun. Math. Comput. Chem. 71 (2014), pp. 461–508.
  • K. Xu, H. Liu, and K.C. Das, The Kirchhoff index of quasi-tree graphs, Z. Naturforsch. 70a (2015), pp. 135–139.
  • Y. Yang, The Kirchhoff index of subdivisions of graphs, Discrete Appl. Math. 171 (2014), pp. 153–157. doi: 10.1016/j.dam.2014.02.015
  • Y. Yang and X. Jiang, Unicyclic graphs with extremal Kirchhoff index, MATCH Commun. Math. Comput. Chem. 60 (2008), pp. 107–120.
  • Y. Yang and D.J. Klein, A recursion formula for resistance distances and its applications, Discrete Appl. Math. 161 (2013), pp. 2702–2715. doi: 10.1016/j.dam.2012.07.015
  • Y. Yang and D.J. Klein, Comparison theorems on resistance distances and Kirchhoff indices of S,T-isomers, Discrete Appl. Math. 175 (2014), pp. 87–93. doi: 10.1016/j.dam.2014.05.014
  • Y. Yang and D.J. Klein, Resistance distance-based graph invariants of subdivisions and triangulations of graphs, Discrete Appl. Math. 181 (2015), pp. 260–274. doi: 10.1016/j.dam.2014.08.039
  • H. Zhang and Y. Yang, Resistance distance and Kirchhoff index in circulant graphs, Int. J. Quantum Chem. 107 (2007), pp. 330–339. doi: 10.1002/qua.21068
  • H. Zhang, X. Jiang, and Y. Yang, Bicyclic graphs with extremal Kirchhoff index, MATCH Commun. Math. Comput. Chem. 61 (2009), pp. 697–712.
  • H.-Y. Zhu, D.J. Klein, and I. Lukovits, Extensions of the Wiener number, J. Chem. Inf. Comput. Sci. 36 (1996), pp. 420–428. doi: 10.1021/ci950116s

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.