149
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

A new algorithm based on spline in tension approximation for 1D quasi-linear parabolic equations on a variable mesh

, &
Pages 1771-1786 | Received 23 Aug 2014, Accepted 12 Jul 2015, Published online: 07 Sep 2015

References

  • E.A. Al-Said, The use of cubic splines in the numerical solution of a system of second-order boundary value problems, Comput. Math. Appl. 42 (2001), pp. 861–869. doi: 10.1016/S0898-1221(01)00204-8
  • E.A. Al-Said, M.A. Noor, and T.M. Rassias, Cubic splines method for solving fourth-order obstacle problems, Appl. Math. Comput. 174 (2006), pp. 180–187. doi: 10.1016/j.amc.2005.03.022
  • T. Aziz and A. Khan, A spline method for second-order singularly perturbed boundary-value problems, J. Comp. Appl. Math. 147 (2002), pp. 445–452. doi: 10.1016/S0377-0427(02)00479-X
  • C. de Boor, Practical Guide to Splines, Springer, Berlin, 1978.
  • M.M. Chawla and R. Subramanian, A new fourth order cubic spline method for non-linear two-point boundary value problems, Int. J. Comput. Math. 22 (1987), pp. 321–341. doi: 10.1080/00207168708803601
  • M.M. Chawla and R. Subramanian, A new spline method for singular two-point boundary value problems, Int. J. Comput. Math. 24 (1988), pp. 291–310. doi: 10.1080/00207168808803650
  • H.F. Ding and Y.X. Zhang, Parameters spline methods for the solution of hyperbolic equations, Appl. Math. Comput. 204 (2008), pp. 938–941. doi: 10.1016/j.amc.2008.08.003
  • H.F. Ding, Y.X. Zhang, J.X. Cao, and J.H. Tian, A class of difference schemes for solving telegraph equation by new non-polynomial spline methods, Appl. Math. Comput. 218 (2012), pp. 4671–4683. doi: 10.1016/j.amc.2011.10.078
  • D.J. Evans, Group explicit iterative methods for solving large linear systems, Int. J. Comput. Math. 17 (1985), pp. 81–108. doi: 10.1080/00207168508803452
  • D.J. Evans, Iterative methods for solving non-linear two point boundary value problems, Int. J. Comput. Math. 72 (1999), pp. 395–401. doi: 10.1080/00207169908804862
  • V. Gopal, R.K. Mohanty, and L.M. Saha, A new high accuracy non-polynomial tension spline method for the solution of one dimensional wave equation in polar coordinates, J. Egypt. Math. Soc. 22 (2014), pp. 280–285. doi: 10.1016/j.joems.2013.08.001
  • S.U. Islam, I.A. Tirmizi, F.I. Haq, and M.A. Khan, Non-polynomial splines approach to the solution of sixth-order boundary-value problems, Appl. Math. Comput. 195 (2008), pp. 270–284. doi: 10.1016/j.amc.2007.04.093
  • M.K. Jain, Spline function approximation in discrete mechanics, Int. J. Nonlinear Mech. 14 (1979), pp. 341–345. doi: 10.1016/0020-7462(79)90007-6
  • M.K. Jain, Numerical Solution of Differential Equations: Finite Difference and Finite Element Methods, 3rd ed., New AGE International Publication, New Delhi, 2014.
  • M.K. Jain and T. Aziz, Spline function approximation for differential equations, Comput. Methods Appl. Mech. Engrg. 26 (1981), pp. 129–143. doi: 10.1016/0045-7825(81)90090-6
  • M.K. Jain and T. Aziz, Cubic spline solution of two-point boundary value problems with significant first derivatives, Comput. Methods Appl. Mech. Engrg. 39 (1983), pp. 83–91. doi: 10.1016/0045-7825(83)90075-0
  • M.K. Jain and T. Aziz, Numerical solution of stiff and convection-diffusion equations using adaptive spline function approximation, Appl. Math. Model. 7 (1983), pp. 57–62. doi: 10.1016/0307-904X(83)90163-4
  • M.K. Kadalbajoo and K.C. Patidar, Tension spline for the numerical solution of singularly perturbed non-linear boundary value problems, J. Comp. Appl. Math. 21 (2002), pp. 717–742.
  • M.K. Kadalbajoo and K.C. Patidar, Tension spline for the solution of self-adjoint singular perturbation problems, Int. J. Comput. Math. 79 (2002), pp. 849–865. doi: 10.1080/00207160211293
  • A. Khan, Parametric cubic spline solution of two point boundary value problems, Appl. Math. Comput. 154 (2004), pp. 175–182. doi: 10.1016/S0096-3003(03)00701-X
  • A. Khan and T. Aziz, Parametric cubic spline approach to the solution of a system of second order boundary value problems, J. Optim. Theory Appl. 118 (2003), pp. 45–54. doi: 10.1023/A:1024783323624
  • A. Khan and T. Aziz, Tension spline method for second-order singularly perturbed boundary-value problems, Int. J. Comput. Math. 82 (2005), pp. 1547–1553. doi: 10.1080/00207160410001684280
  • A. Khan, I. Khan, T. Aziz, and M. Stojanovic, A variable-mesh approximation method for singularly perturbed boundary-value problems using cubic spline in tension, Int. J. Comput. Math. 81 (2004), pp. 1513–1518. doi: 10.1080/00207160412331284169
  • M. Marušić, A fourth/second order accurate collocation method for singularly perturbed two-point boundary value problems using tension splines, Numer. Math. 88 (2001), pp. 135–158. doi: 10.1007/PL00005437
  • R.K. Mohanty, On the use of AGE algorithm with a new high accuracy Numerov type variable mesh discretization for 1D non-linear parabolic equations, Numer. Algorithms. 54 (2010), pp. 379–393. doi: 10.1007/s11075-009-9341-9
  • R.K. Mohanty and U. Arora, A family of non-uniform mesh tension spline methods for singularly perturbed two-point singular boundary value problems with significant first derivatives, Appl. Math. Comput. 172 (2006), pp. 531–544. doi: 10.1016/j.amc.2005.02.023
  • R.K. Mohanty and V. Dahiya, An O(k2 + kh2 + h4) accurate two-level implicit cubic spline method for one space dimensional quasi-linear parabolic equations, Am. J. Comput. Math. 1 (2011), pp. 11–17. doi: 10.4236/ajcm.2011.11002
  • R.K. Mohanty, D.J. Evans, and U. Arora, Convergent spline in tension methods for singularly perturbed two-point singular boundary value problems, Int. J. Comput. Math. 82 (2005), pp. 55–66. doi: 10.1080/0020716042000261414
  • R.K. Mohanty and V. Gopal, A fourth order finite difference method based on spline in tension approximation for the solution of one-space dimensional second order quasi-linear hyperbolic equations, Adv. Difference Equ. 2013 (2013), ID:70.
  • R.K. Mohanty, N. Jha, and D.J. Evans, Spline in compression method for the numerical solution of singularly perturbed two-point singular boundary-value problems, Int. J. Comput. Math. 81 (2004), pp. 615–627. doi: 10.1080/00207160410001684307
  • R.K. Mohanty and J. Talwar, A combined approach using coupled reduced alternating group explicit (CRAGE) algorithm and sixth order off-step discretization for the solution of two point nonlinear boundary value problems, Appl. Math. Comput. 219 (2012), pp. 248–259. doi: 10.1016/j.amc.2012.06.014
  • R.K. Mohanty and J. Talwar, Compact alternating group explicit method for the cubic spline solution of two point boundary value problems with significant nonlinear first derivative terms, Math. Sci. 6 (2012), ID:58. doi: 10.1186/2251-7456-6-58
  • J. Rashidinia, R. Jalilian, and V. Kazemi, Spline methods for the solutions of hyperbolic equations, Appl. Math. Comput. 190 (2007), pp. 882–886. doi: 10.1016/j.amc.2007.01.082
  • J. Rashidinia and R. Mohammadi, Non-polynomial cubic spline methods for the solution of parabolic equations, Int. J. Comput. Math. 85 (2008), pp. 843–850. doi: 10.1080/00207160701472436
  • J. Rashidinia and R. Mohammadi, Tension spline approach for the numerical solution of nonlinear Klein-Gordon equation, Comput. Phys. Comm. 181 (2010), pp. 78–91. doi: 10.1016/j.cpc.2009.09.001
  • J. Rashidinia and R. Mohammadi, Tension spline solution of non-linear sine-Gordon equation, Numer. Algorithms. 56 (2011), pp. 129–142. doi: 10.1007/s11075-010-9377-x
  • J. Rashidinia, Z. Mahmoodi, and M. Ghasemi, Parametric spline method for a class of singular two-point boundary value problems, Appl. Math. Comput. 188 (2007), pp. 58–63. doi: 10.1016/j.amc.2006.09.084
  • S.G. Rubin and R.A. Graves, Viscous flow solutions with a cubic spline approximation, Comput. Fluids. 3 (1975), pp. 1–36. doi: 10.1016/0045-7930(75)90006-7
  • D.G. Schweikert, An interpolation curve using a spline in tension, J. Math. Mech. 15 (1966), pp. 312–317.
  • I.A. Tirmizi, F.I. Haq, and S.U. Islam, Non-polynomial spline solution of singularly perturbed boundary-value problems, Appl. Math. Comput. 196 (2008), pp. 6–16. doi: 10.1016/j.amc.2007.05.029
  • M.H. Schultz and R.S. Varga, L-splines, Numer. Math. 10 (1967), pp. 345–369. doi: 10.1007/BF02162033

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.