265
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Stability and convergence analysis of implicit–explicit one-leg methods for stiff delay differential equations

&
Pages 1964-1983 | Received 18 Jan 2015, Accepted 30 Jul 2015, Published online: 02 Sep 2015

References

  • G. Akrivis, Implicit–explicit multistep methods for nonlinear parabolic equations, Math. Comput. 82(281) (2013), pp. 45–68. doi: 10.1090/S0025-5718-2012-02628-7
  • G. Akrivis, M. Crouzeix, and C. Makridakis, Implicit–explicit multistep methods for quasilinear parabolic equations, Numer. Math. 82 (1999), pp. 521–541. doi: 10.1007/s002110050429
  • G. Akrivis and Y.-S. Smyrlis, Implicit–explicit BDF methods for the Kuramoto-Sivashinsky equations, Appl. Numer. Math. 51 (2004), pp. 151–169. doi: 10.1016/j.apnum.2004.03.002
  • U.M. Ascher, S.J. Ruuth, and B.T.R. Wetton, Implicit–explicit methods for time-dependent partial differential equations, SIAM J. Numer. Anal. 32 (1995), pp. 797–823. doi: 10.1137/0732037
  • A. Bellen and M. Zennaro, Numerical Methods for Delay Differential Equations, Oxford University Press, Oxford, 2003.
  • L. Blanco-Cocom and E. Ávila-Vales, Convergence and stability analysis of θ-method for delayed diffusion mathematical models, Appl. Math. Comput. 231 (2014), pp. 16–25. doi: 10.1016/j.amc.2013.12.188
  • G. Dahlquist, G-stability is equivalent to A-stability, BIT 18 (1978), pp. 384–401. doi: 10.1007/BF01932018
  • J. Frank, W. Hundsdorfer, and J.G. Verwer, On the stability of implicit–explicit linear multistep methods, Appl. Numer. Math. 25 (1997), pp. 193–205. doi: 10.1016/S0168-9274(97)00059-7
  • T. Gjesdal, Implicit–explicit methods based on strong stability preserving multistep time discretization, Appl. Numer. Math. 57 (2007), pp. 911–919. doi: 10.1016/j.apnum.2006.09.001
  • I. Grooms and K. Julien, Linearly implicit–explicit methods for nonlinear PDEs with linear dispersion and dissipation, J. Comput. Phys. 230 (2011), pp. 3630–3650. doi: 10.1016/j.jcp.2011.02.007
  • N. Guglielmi and E. Hairer, Computing breaking points in implicit delay differential equations, Adv. Comput. Math. 29(3) (2008), pp. 229–247. doi: 10.1007/s10444-007-9044-5
  • E. Hairer and G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-algebraic Problems, Springer, Berlin, 1996.
  • K.J. in't Hout, On the contractivity of implicit–explicit linear multistep methods, Appl. Numer. Math. 42 (2002), pp. 201–212. doi: 10.1016/S0168-9274(01)00151-9
  • C.M. Huang, S.F. Li, H.Y. Fu, and G.N. Chen, Stability and error analysis of one-leg methods for nonlinear delay differential equations, J. Comput. Appl. Math. 103 (1999), pp. 263–279. doi: 10.1016/S0377-0427(98)00262-3
  • C.M. Huang, S.F. Li, H.Y. Fu, and G.N. Chen, D-convergence of one-leg methods for stiff delay differential equations, J. Comput. Math. 19(6) (2001), pp. 601–606.
  • W.H. Hundsdorfer and B.L. Steininger, Convergence of linear multistep and one-leg methods for stiff nonlinear initial value problems, BIT 31 (1991), pp. 124–143. doi: 10.1007/BF01952789
  • W. Hundsdorfer and S.J. Ruuth, IMEX extensions of linear multistep methods with general monotonicity and boundedness properties, J. Comput. Phys. 225 (2007), pp. 2016–2042. doi: 10.1016/j.jcp.2007.03.003
  • Z. Jackiewicz and B. Zubik-Kowal, Spectral collocation and waveform relaxation methods for nonlinear delay partial differential equations, Appl. Numer. Math. 56 (2006), pp. 433–443. doi: 10.1016/j.apnum.2005.04.021
  • T. Koto, Stability of IMEX linear multistep methods for ordinary and delay differential equations, Front. Math. China 4(1) (2009), pp. 113–129. doi: 10.1007/s11464-009-0005-9
  • D.F. Li, C.J. Zhang, and H.Y. Qin, LDG method for reaction–diffusion dynamical systems with time delay, Appl. Math. Comput. 217 (2011), pp. 9173–9181. doi: 10.1016/j.amc.2011.03.153
  • D.F. Li and C.J. Zhang, L∞ error estimates of discontinuous Galerkin methods for delay differential equations, Appl. Numer. Math. 82 (2014), pp. 1–10. doi: 10.1016/j.apnum.2014.01.008
  • S.F. Li, Theory of Computational Methods for Stiff Differential Equation, Hunan Science and Technology Press, Changsha, 1997. (in Chinese).
  • L. Torelli, Stability of numerical methods for delay differential equations, J. Comput. Appl. Math. 25 (1989), pp. 15–26. doi: 10.1016/0377-0427(89)90071-X
  • J.G. Verwer, J.G. Blom, and W. Hundsdorfer, An implicit–explicit approach for atmospheric transport-chemistry problems, Appl. Numer. Math. 20 (1996), pp. 191–209. doi: 10.1016/0168-9274(95)00126-3
  • D. Wang and S. Ruuth, Variable step-size implicit–explicit linear multistep methods for time-dependent partial differential equations, J. Comput. Math. 26(6) (2011), pp. 838–855.
  • J.H. Wu, Theory and Applications of Partial Functional Differential Equations, Springer, New York, 1996.
  • A.G. Xiao, G.G. Zhang, and X. Yi, Two classes of implicit–explicit multistep methods for nonlinear stiff initial-value problems, Appl. Math. Comput. 247 (2014), pp. 47–60. doi: 10.1016/j.amc.2014.08.066
  • A.G. Xiao, C.M. Huang, and S.Q. Gan, Convergence results of one-leg and linear multistep methods for multiply stiff singular perturbation problems, Computing 66(4) (2001), pp. 365–375. doi: 10.1007/s006070170020
  • K. Zhang, J.C.F. Wong, and R. Zhang, Second-order implicit–explicit scheme for the Gray-Scott model, J. Comput. Appl. Math. 213 (2008), pp. 559–581. doi: 10.1016/j.cam.2007.01.038

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.