520
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Numerical solutions of two-dimensional unsteady convection–diffusion problems using modified bi-cubic B-spline finite elements

&
Pages 1-21 | Received 24 Jun 2014, Accepted 17 Aug 2015, Published online: 21 Sep 2015

References

  • Y.N. Chen, S.C. Yang, and J.Y. Yang, Implicit weighted essentially non-oscillatory schemes for the incompressible Navier–Stokes equations, Internat. J. Numer. Methods Fluids 31(4) (1999), pp. 747–765.
  • P.P. Chinchapatnam, K. Djidjeli, and P.B. Nair, Unsymmetric and symmetric meshless schemes for the unsteady convection–diffusion equation, Comput. Methods Appl. Mech. Engrg. 195(19) (2006), pp. 2432–2453.
  • P.C. Chatwin and C.M. Allen, Mathematical models of dispersion in rivers and estuaries, Ann. Rev. Fluid Mech. 17(1) (1985), pp. 119–149.
  • M.H. Chaudhry, D.E. Cass, and J.E. Edinger, Modeling of unsteady-flow water temperatures, J. Hydraul. Eng. 109(5) (1983), pp. 657–669.
  • I. Dag, A. Canivar, and A. Sahin, Taylor–Galerkin method for advection-diffusion equation, Kybernetes 40(5/6) (2011), pp. 762–777.
  • İ. Dağ, D. Irk, and M. Tombul, Least-squares finite element method for the advection–diffusion equation, Appl. Math. Comput. 173(1) (2006), pp. 554–565.
  • M. Dehghan, Weighted finite difference techniques for the one-dimensional advection–diffusion equation, Appl. Math. Comput. 147(2) (2004), pp. 307–319.
  • M. Dehghan, Numerical solution of the three-dimensional advection–diffusion equation, Appl. Math. Comput. 150(1) (2004), pp. 5–19.
  • M. Dehghan, Time-splitting procedures for the solution of the two-dimensional transport equation, Kybernetes 36(5/6) (2007), pp. 791–805.
  • M. Dehghan and M. Lakestani, The use of cubic B-spline scaling functions for solving the one-dimensional hyperbolic equation with a nonlocal conservation condition, Numer. Methods Partial Differential Equations 23(6) (2007), pp. 1277–1289.
  • M. Dehghan and M. Lakestani, Numerical solution of nonlinear system of second-order boundary value problems using cubic B-spline scaling functions, Int. J. Comput. Math. 85(9) (2008), pp. 1455–1461.
  • M. Dehghan and A. Mohebbi, High-order compact boundary value method for the solution of unsteady convection–diffusion problems, Math. Comput. Simulation 79(3) (2008), pp. 683–699.
  • G.H. Golub and C.F. VanLoan, Matrix Computations, Johns Hopkins University Press, Baltimore, 1989.
  • S. Gottlieb, On high order strong stability preserving Runge–Kutta and multi step time discretizations, J. Sci. Comput. 25(1) (2005), pp. 105–128.
  • M.M. Gupta, R.P. Manohar, and J.W. Stephenson, A single cell high order scheme for the convection–diffusion equation with variable coefficients, Internat. J. Numer. Methods Fluids 4(7) (1984), pp. 641–651.
  • R.W. Hockney, A fast direct solution of Poisson's equation using Fourier analysis, J. ACM (JACM) 12(1) (1965), pp. 95–113.
  • J. Isenberg and C. Gutfinger, Heat transfer to a draining film, Int. J. Heat Mass Transf. 16(2) (1973), pp. 505–512.
  • M.K. Kadalbajoo and P. Arora, Taylor–Galerkin B-spline finite element method for the one-dimensional advection–diffusion equation, Numer. Methods Partial Differential Equations 26(5) (2010), pp. 1206–1223.
  • J.C. Kalita, D.C. Dalal, and A.K. Dass, A class of higher order compact schemes for the unsteady two-dimensional convection–diffusion equation with variable convection coefficients, Internat. J. Numer. Methods Fluids 38(12) (2002), pp. 1111–1131.
  • S. Karaa and J. Zhang, High order ADI method for solving unsteady convection–diffusion problems, J. Comput. Phys. 198(1) (2004), pp. 1–9.
  • T. Kohler and D. Voss, Second-order methods for diffusion–convection equations, Comm. Numer. Methods Engrg. 15(10) (1999), pp. 689–699.
  • A. Korkmaz and I. Dag, Cubic B-spline differential quadrature methods for the advection-diffusion equation, Internat. J. Numer. Methods Heat Fluid Flow 22(8) (2012), pp. 1021–1036.
  • N. Kumar, Unsteady flow against dispersion in finite porous media, J. Hydrol. 63(3) (1983), pp. 345–358.
  • M. Lakestani and M. Dehghan, Numerical solution of Fokker–Planck equation using the cubic B-spline scaling functions, Numer. Methods Partial Differential Equations 25(2) (2009), pp. 418–429.
  • M. Lakestani and M. Dehghan, Numerical solution of Riccati equation using the cubic B-spline scaling functions and Chebyshev cardinal functions, Comput. Phys. Comm. 181(5) (2010), pp. 957–966.
  • M. Lakestani and M. Dehghan, Numerical solutions of the generalized Kuramoto–Sivashinsky equation using B-spline functions, Appl. Math. Model. 36(2) (2012), pp. 605–617.
  • M. Lakestani and M. Dehghan, Four techniques based on the B-spline expansion and the collocation approach for the numerical solution of the Lane–Emden equation, Math. Methods Appl. Sci. 36(16) (2013), pp. 2243–2253.
  • M. Lakestani, M. Dehghan, and S. Irandoust-Pakchin, The construction of operational matrix of fractional derivatives using B-spline functions, Commun. Nonlinear Sci.Numer. Simul. 17(3) (2012), pp. 1149–1162.
  • J. Li, Y. Chen, and D. Pepper, Radial basis function method for 1-d and 2-d groundwater contaminant transport modeling, Comput. Mech. 32(1–2) (2003), pp. 10–15.
  • C. Man and C.W. Tsai, A higher-order predictor–corrector scheme for two-dimensional advection–diffusion equation, Internat. J. Numer. Methods Fluids 56(4) (2008), pp. 401–418.
  • R.C. Mittal and R.K. Jain, Numerical solutions of nonlinear Burgers' equation with modified cubic B-splines collocation method, Appl. Math. Comput. 218 (2012), pp. 7839–7855. Available at http://dx.doi.org/10.1016/j.amc.2012.01.059.
  • R. Mittal and A. Tripathi, Numerical solutions of generalized Burgers–Fisher and generalized Burgers–Huxley equations using collocation of cubic B-splines, Int. J. Comput. Math. 1 (2014), pp. 1–25.
  • R.C. Mittal and A. Tripathi, A collocation method for numerical solutions of coupled burgers equations, Int. J. Comput. Methods Eng. Sci. Mech. 15(5) (2014), pp. 457–471.
  • R. Mohammadzadeh, M. Lakestani, and M. Dehghan, Collocation method for the numerical solutions of Lane–Emden type equations using cubic Hermite spline functions, Math. Methods Appl. Sci. 37(9) (2014), pp. 1303–1717.
  • A. Mohebbi and M. Dehghan, High-order compact solution of the one-dimensional heat and advection–diffusion equations, Appl. Math. Model. 34(10) (2010), pp. 3071–3084.
  • B.J. Noye, A compact unconditionally stable finite-difference method for transient one-dimensional advection-diffusion, Comm. Appl. Numer. Methods 7(7) (1991), pp. 501–512.
  • B.J. Noye and H.H. Tan, Finite difference methods for solving the two-dimensional advection–diffusion equation, Internat. J. Numer. Methods Fluids 9(1) (1989), pp. 75–98.
  • S. Patankar, Numerical Heat Transfer and Fluid Flow, CRC Press, New York, 1980.
  • P.J. Roache, Computational Fluid Dynamics, Hermosa Publishers, Albuquerque, NM, 1972.
  • M. Sari, G. Gürarslan, and A. Zeytinoğlu, High-order finite difference schemes for solving the advection-diffusion equation, Math. Comput. Appl. 15(3) (2010), pp. 449–460.
  • K. Sepehrnoori and G.F. Carey, Numerical integration of semidiscrete evolution systems, Comput. Methods Appl. Mech. Eng. 27(1) (1981), pp. 45–61.
  • B. Servan-Camas and F.T.-C. Tsai, Lattice Boltzmann method with two relaxation times for advection–diffusion equation: Third order analysis and stability analysis, Adv. Water Res. 31(8) (2008), pp. 1113–1126.
  • G.D. Smith, Numerical Solution of Partial Differential Equations: Finite Difference Methods, Oxford University Press, New York, 1985.
  • W. Spotz, High-order compact finite difference schemes for computational mechanics, Ph.D. thesis, University of Texas at Austin, Austin, TX, 1995.
  • W.F. Spotz and G.F. Carey, Extension of high-order compact schemes to time-dependent problems, Numer. Methods Partial Differential Equations 17(6) (2001), pp. 657–672.
  • J.C. Strikwerda, High-order-accurate schemes for incompressible viscous flow, Internat. J. Numer. Methods Fluids 24(7) (1997), pp. 715–734.
  • Z.F. Tian and Y.B. Ge, A fourth-order compact adi method for solving two-dimensional unsteady convection–diffusion problems, J. Comput. Appl. Math. 198(1) (2007), pp. 268–286.
  • H. Winter and J. Thuburn, Numerical advection schemes in two dimensions, preprint (2011). Available at http://www.lancs.ac.uk/winterh/advectionCS.pdf.
  • M. Yanwen, F. Dexun, T. Kobayashi, and N. Taniguchi, Numerical solution of the incompressible Navier–Stokes equations with an upwind compact difference scheme, Internat. J. Numer. Methods Fluids 30(5) (1999), pp. 509–521.
  • M. Zerroukat, K. Djidjeli, and A. Charafi, Explicit and implicit meshless methods for linear advection–diffusion type of partial differential equations, Internat. J. Numer. Methods Engrg. 48(1) (2000), pp. 19–35.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.