587
Views
28
CrossRef citations to date
0
Altmetric
Original Articles

A numerical approach for the Riesz space-fractional Fisher' equation in two-dimensions

, , &
Pages 296-315 | Received 10 May 2015, Accepted 01 Oct 2015, Published online: 19 Nov 2015

References

  • G.D. Akrivis, V.A. Dougalis, and O.A. Karakashian, On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation, Numer. Math. 59 (1991), pp. 31–53. doi: 10.1007/BF01385769
  • A. Atangana, Convergence and stability analysis of a novel iteration method for fractional biological population equation, Neural Comput. Appl. 25(5) (2014), pp. 1021–1030. doi: 10.1007/s00521-014-1586-0
  • V.K. Baranwal, R.K. Pandey, M.P. Tripathi, and O.P. Singh, An analytic algorithm for time fractional nonlinear reaction–diffusion equation based on a new iterative method, Commun. Nonlinear. Sci. 17(10) (2012), pp. 3906–3921. doi: 10.1016/j.cnsns.2012.02.015
  • H. Berestycki, J.M. Roquejoffre, and L. Rossi, The periodic patch model for population dynamics with fractional diffusion, Discrete Contin. Dyn. Syst. Ser. S 4(1) (2011), pp. 1–13. doi: 10.3934/dcdss.2011.4.1
  • W.P. Bu, Y.F. Tang, Y.C. Wu, and J.Y. Yang, Finite difference/finite element method for two-dimensional space and time fractional Bloch–Torrey equations, J. Comput. Phys. 293(15) (2015), pp. 264–279. doi: 10.1016/j.jcp.2014.06.031
  • W.P. Bu, Y.F. Tang, and J.Y. Yang, Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations, J. Comput. Phys. 276 (2014), pp. 26–38. doi: 10.1016/j.jcp.2014.07.023
  • X. Cabré, A.C. Coulon, and J.M. Roquejoffer, Propagation in Fisher-KPP type equations with fractional diffusion in periodic media, C. R. Math. 350(19) (2012), pp. 679–722.
  • X. Cabré and J.-M. Roquejoffer, The influence of fractional diffusion in Fisher-KPP equations, Comm. Math. Phys. 320(3) (2013), pp. 679–722. doi: 10.1007/s00220-013-1682-5
  • M.H. Chen and W.H. Deng, A second-order numerical method for two-dimensional two-sided space fractional convection diffusion equation, Appl. Math. Model. 38(13) (2014), pp. 3244–3259. doi: 10.1016/j.apm.2013.11.043
  • M.H. Chen, W.H. Deng, and Y.J. Wu, Superlinearly convergent algorithms for the two-dimensional space-time Caputo-Riesz fractional diffusion equation, Appl. Numer. Math. 70 (2013), pp. 22–41. doi: 10.1016/j.apnum.2013.03.006
  • S. Chen, F. Liu, and K. Burrage, Numerical simulation of a new two-dimensional variable-order fractional percolation equation in non-homogeneous porous media, Comput. Math. Appl. 67(9) (2014), pp. 1673–1681. doi: 10.1016/j.camwa.2014.03.003
  • T.S. El-Danaf and A.R. Hadhoud, Computational method for solving space fractional Fisher's nonlinear equation, Math. Methods Appl. Sci. 37(5) (2014), pp. 657–662. doi: 10.1002/mma.2822
  • V.J. Ervin and J.P. Roop, Variational formulation for the stationary fractional advection dispersion equation, Numer. Meth. Part. D. E. 22(3) (2006), pp. 558–576. doi: 10.1002/num.20112
  • P. Felmer and M. Yangari, Fast propagation for fractional KPP equations with slowly decaying initial conditions, SIAM J. Math. Anal. 45(2) (2013), pp. 662–678. doi: 10.1137/120879294
  • R.A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics 7(4) (1937), pp. 355–369. doi: 10.1111/j.1469-1809.1937.tb02153.x
  • A.K. Gupta and S.S. Ray, On the solutions of fractional Burgers–Fisher and generalized Fishers equations using two reliable methods, J. Membr. Biol. 2014 (2014), pp. 1–16.
  • N.A. Khan, M. Ayaz, L. Jin, and A. Yildirim, On approximate solutions for the time-fractional reaction–diffusion equation of Fisher type, Int. J. Phys. Sci. 6(10) (2011), pp. 2483–2496.
  • N.A. Khan, N.U. Khan, A. Ara, and M. Jamil, Approximate analytical solutions of fractional reaction–diffusion equations, J. King Saud Univ. Sci. 24(2) (2012), pp. 111–118. doi: 10.1016/j.jksus.2010.07.021
  • R.C. Koeller, Application of fractional calculus to the theory of viscoelasticity, J. Appl. Mech. 51 (1984), pp. 229–307. doi: 10.1115/1.3167616
  • B. Li and W. Sun, Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media, SIAM J. Numer. Anal. 51(4) (2013), pp. 1959–1977. doi: 10.1137/120871821
  • F. Liu, S. Chen, I. Turner, K. Burrage, and V. Anh, Numerical simulation for two-dimensional Riesz space fractional diffusion equations with a nonlinear reaction term, Cent. Eur. J. Phys. 11(10) (2013), pp. 1221–1232.
  • F. Liu, I. Turner, V. Anh, Q. Yang, and K. Burrage, A numerical method for the fractional Fitzhugh-Nagumo monodomain model, ANZIAM J. 54 (2013), pp. C608–C629.
  • F. Liu, P. Zhuang, I. Turner, V. Anh, and K. Burrage, A semi-alternating direction method for a 2-D fractional FitzHugh-Nagumo monodomain model on an approximate irregular domain, J. Comput. Phys. 293 (2015), pp. 252–263. doi: 10.1016/j.jcp.2014.06.001
  • H.Y. Martínez, J.M. Reyes, and I.O. Sosa, Analytical solutions to the fractional Fisher equation by applying the fractional sub-equation method, Br. J. Math. Comput. Sci. 4(11) (2014), pp. 1551–1566. doi: 10.9734/BJMCS/2014/9248
  • R. Metzler and J. Klafter, The random Walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep. 339(1) (2000), pp. 1–77. doi: 10.1016/S0370-1573(00)00070-3
  • S. Momani and Z. Odibat, A novel method for nonlinear fractional partial differential equations: Combination of DTM and generalized Taylor's formula, J. Comput. Appl. Math. 220(1) (2008), pp. 85–95. doi: 10.1016/j.cam.2007.07.033
  • L.L. Qiu, W.H. Deng, and J.S. Hesthaven, Nodal discontinuous Galerkin methods for fractional diffusion equations on 2D domain with triangular meshes, 2014. Available at http://arxiv.org/abs/1410.0796.
  • R. Rajaraman and G. Hariharan, An efficient wavelet-based approximation method to gene propagation model arising in population biology, J. Membr. Biol. 247(7) (2014), pp. 561–570. doi: 10.1007/s00232-014-9672-x
  • J. Song, Q. Yu, F. Liu, and I. Turner, A spatially second-order accurate implicit numerical method for the space and time fractional Bloch–Torrey equation, Numer. Algorithms 66(4) (2014), pp. 911–932. doi: 10.1007/s11075-013-9768-x
  • S. Tang and R.O. Weber, Numerical study of Fisher's equation by a Petrov–Galerkin finite element method, J. Aust. Math. Soc. Ser. B 33 (1991), pp. 27–38. doi: 10.1017/S0334270000008602
  • Q. Yu, F. Liu, I. Turner, and K. Burrage, A computationally effective alternating direction method for the space and time fractional Bloch–Torrey equation in 3-D, Appl. Math. Comput. 219 (2012), pp. 4082–4095. doi: 10.1016/j.amc.2012.10.056
  • Q. Yu, F. Liu, I. Turner, and K. Burrage, Numerical investigation of three types of space and time fractional Bloch–Torrey equations in 2D, Cent. Eur. J. Phys. 11(6) (2013), pp. 646–665.
  • Q.Q. Yang, I. Turner, F.W. Liu, and M. Ilić, Novel numerical methods for solving the time-space fractional diffusion equation in 2D, SIAM J. Sci. Comput. 33 (2011), pp. 1159–1180. doi: 10.1137/100800634
  • Q.Q. Yang, I. Turner, T. Moroney, and F.W. Liu, A finite volume scheme with preconditioned Lanczos method for two-dimensional space-fractional reaction-diffusion equations, Appl. Math. Model. 38(15) (2014), pp. 3755–3762. doi: 10.1016/j.apm.2014.02.005
  • F.H. Zhang, F.W. Liu, C.P. Li, K. Burrage, I. Turner, and V. Anh, A Crank–Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction–diffusion equation, SIAM J. Numer. Anal. 52(6) (2014), pp. 2599–2622. doi: 10.1137/130934192
  • H. Zhang, F. Liu, and V. Anh, Garlerkin finite element approximations of symmetric space fractional partial differential equations, Appl. Math. Comput. 217(6) (2010), pp. 2534–2545. doi: 10.1016/j.amc.2010.07.066
  • X.D. Zhang, Y.N. He, W.W. Lei, B. Tang, and S.L. Wang, A fully discrete local discontinuous Galerkin method for one-dimensional time-fractional Fisher's equation, Int J. Comput. Math. 91(9) (2014), pp. 2021–2038. doi: 10.1080/00207160.2013.866233
  • Y.M. Zhao, W.P. Bu, J.F. Huang, D.Y. Liu, and Y.F. Tang, Finite element method for two-dimensional space-fractional advection-dispersion equations, Appl. Math. Comput. 257 (2015), pp. 553–565. doi: 10.1016/j.amc.2015.01.016

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.