204
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Moving boundary transformation for American call options with transaction cost: finite difference methods and computing

, , , &
Pages 345-362 | Received 28 Apr 2015, Accepted 06 Oct 2015, Published online: 08 Dec 2015

References

  • J. Ankudinova and M. Ehrhardt, Fixed domain transformations and split-step finite difference schemes for sonlinear Black–Scholes equations for American options, in Nonlinear Models in Mathematical Finance: New Research Trends in Option Pricing, M. Ehrhardt, ed., Nova Science Publishers, Inc., New York, 2008, pp. 243–283.
  • J. Ankudinova and M. Ehrhardt, On the numerical solution of nonlinear Black–Scholes equations, J. Comput. Math. Appl. 56 (2008), pp. 799–812. doi: 10.1016/j.camwa.2008.02.005
  • M. Avellaneda, A. Lévy, and A. Parás, Pricing and hedging derivative securities in markets with uncertain volatilities, J. Appl. Math. Finance 2 (1995), pp. 73–88. doi: 10.1080/13504869500000005
  • G. Barles and H. M. Soner, Option pricing with transaction costs and a nonlinear Black–Scholes equation, J. Financ. Stoch. 2 (1998), pp. 369–397. doi: 10.1007/s007800050046
  • F. Black and M.S. Scholes, The pricing of options and corporate liabilities, J. Political Econ. 81 (1973), pp. 637–654. doi: 10.1086/260062
  • P. Boyle and T. Vorst, Option replication in discrete time with transaction costs, J. Financ. 47 (1973), pp. 271–293. doi: 10.1111/j.1540-6261.1992.tb03986.x
  • R. Company, E. Navarro, J.R. Pintos, and E. Ponsoda, Numerical solution of linear and nonlinear Black–Scholes option pricing equations, J. Comput. Math. Appl. 56 (2008), pp. 813–821. doi: 10.1016/j.camwa.2008.02.010
  • R. Company, L. Jódar, and J.R. Pintos, Consistent stable difference schemes for nonlinear Black–Scholes equations modelling option pricing with transaction costs, ESAIM: Math. Model. Numer. Anal. 43 (2009), pp. 1045–1061. doi: 10.1051/m2an/2009014
  • R. Company, L. Jódar, E. Ponsoda, and C. Ballester, Numerical analysis and simulation of option pricing problems modeling illiquid markets, Comput. Math. Appl. 59(8) (2010), pp. 2964–2975. doi: 10.1016/j.camwa.2010.02.014
  • R. Company, V.N. Egorova, and L. Jódar, Constructing positive reliable numerical solution for American call options: A new front-fixing approach, J. Comput. Appl. Math. 291 (2016), pp. 422–431. doi: 10.1016/j.cam.2014.09.013
  • J. Crank, Free and Moving Boundary problems, Oxford University Press, Oxford, 1984.
  • E. Dremkova and M. Ehrhardt, A high-order compact method for nonlinear Black–Scholes option pricing of American options, Int. J. Comput. Math. 88 (2011), pp. 2782–2797. doi: 10.1080/00207160.2011.558574
  • D.J. Duffy, Unconditionally Stable and Second-Order Accurate Explicit Finite Difference Schemes Using Domain Transformation: Part I One-Factor Equity Problems, SSRN, 2009. Available at http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1552926.
  • B. Düring, M. Fournier, and A. Jüngel, Convergence of a high order compact finite difference scheme for a nonlinear Black–Scholes equation, ESAIM Math. Model. Numer. Anal. 38 (2004), pp. 359–369. doi: 10.1051/m2an:2004018
  • P. Heider, Numerical methods for non-linear Black–Scholes equations, J. Appl. Math. Financ. 17 (2010), pp. 59–81. doi: 10.1080/13504860903075670
  • T. Hoggard, A.E. Whalley, and P. Wilmott, Hedging option portfolios in the presence of transaction costs, J. Adv. Futures Options Res. 7 (1994), pp. 217–235.
  • J. Hull and A. White, Valuing derivative securities using the explicit finite difference method, J. Financ. Quant. Anal. 25 (1990) 87–100. doi: 10.2307/2330889
  • M. Jandačka and D. Ševčovič, On the risk adjusted pricing methodology based valuation of vanilla options and explanation of the volatility smile, J. Appl. Math. 3 (2005), pp. 235–258. doi: 10.1155/JAM.2005.235
  • D. Knuth, The Art of Computer Programming 3, 3rd ed., Addison-Wesley, Reading, MA, 1997.
  • M. Kratka, No mystery behind the smile, J. Risk 9 (1998), pp. 67–71.
  • Y.-K. Kwok, Mathematical Models of Financial Derivatives, 2nd ed., Springer, Berlin, 2008.
  • C.-H. Lai, An application of quasi-Newton methods for the numerical solution of interface problems, J. Adv. Eng. Softw. 28 (1997), pp. 333–339. doi: 10.1016/S0965-9978(97)00009-4
  • H.G. Landau, Heat conduction in a melting solid, J. Q. Appl. Math. 8 (1950), pp. 81–95.
  • M. Leland, Option pricing and replication with transaction costs, J. Financ. 5 (1985), pp. 1283–1301. doi: 10.1111/j.1540-6261.1985.tb02383.x
  • D.C. Lesmana and S. Wang, An upwind finite difference method for a nonlinear Black–Scholes equation governing European option valuation, Appl. Math. Comput. 219 (2013), pp. 8818–8828. doi: 10.1016/j.amc.2012.12.077
  • S. Leung and S. Osher, An alternating direction explicit (ADE) scheme for time-dependent evolution equations, Technical report UCLA, 2005.
  • G.R. Liu, Mesh Free Methods: Moving Beyond the Finite Element Method, CRC Press, Boca Raton, FL, 2002.
  • E. Marwil, Convergence results for Schubert's method for solving sparse nonlinear equations, SIAM J. Numer. Anal. 16(4) (1979), pp. 588–604. doi: 10.1137/0716044
  • B.F. Nielsen, O. Skavhaug, and A. Tvelto, Penalty and front-fixing methods for the numerical solution of American option problems, J. Comput. Financ. 5 (2002), pp. 69–97.
  • G. Pealat and D.J. Duffy, The alternating direction explicit (ADE) method for one-factor problems, Wilmott Mag. (2011), pp. 54–60. doi: 10.1002/wilm.10014
  • D.M. Pooley, P.A. Forsyth, and K.R. Vetzal, Numerical convergence properties of option pricing PDEs with uncertain volatility, J. Numer. Anal. 23 (2003), pp. 241–267. doi: 10.1093/imanum/23.2.241
  • D. Ševčovič, Analysis of the free boundary for the pricing of an American call option, Eur. J. Appl. Math. 12(1) (2001), pp. 25–37. doi: 10.1017/S0956792501004338
  • D. Ševčovič, An iterative algorithm for evaluating approximations to the optimal exercise boundary for a nonlinear Black–Scholes equation, J. Can. Appl. Math. Q. 15(1) (2007), pp. 77–97.
  • D. Ševčovič, Transformation methods for evaluating approximations to the optimal exercise boundary for linear and nonlinear Black–Scholes equations, in Nonlinear Models in Mathematical Finance: New Research Trends in Option Pricing, M. Ehrhardt, ed., Nova Science Publishers, Inc., New York, 2008, pp. 173–218.
  • P. Wilmott, S. Howison, and J. Dewynne, The Mathematics of Financial Derivatives, Cambridge University Press, Cambridge, 1995.
  • L. Wu and Y.-K. Kwok, A front-fixing method for the valuation of American option, J. Financ. Eng. 6(2) (1997), pp. 83–97.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.