186
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

An averaged vector field Legendre spectral element method for the nonlinear Schrödinger equation

&
Pages 1196-1218 | Received 06 Dec 2015, Accepted 20 Feb 2016, Published online: 20 May 2016

References

  • G.D. Akrivis, V.A. Dougalis, and O.A. Karakashian, On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schröinger equation, Numer. Math. 59 (1991), pp. 31–53. doi: 10.1007/BF01385769
  • W. Bao and J. Shen, A Fourth-order time-splitting Laguerre–Hermite pseudospectral method for Bose-Einstein condensates, SIAM J. Sci. Comput. 26 (2005), pp. 2010–2028. doi: 10.1137/030601211
  • F.B. Belgacem and C. Bernardi, Spectral element discretization of the Maxwell equations, Math. Comput. 68 (1999), pp. 1497–1521. doi: 10.1090/S0025-5718-99-01086-8
  • C. Besse, B. Bidegaray, and S. Descombes, Order estimates in time of splitting methods for the nonlinear Schröinger equation, SIAM J. Numer. Anal. 40 (2002), pp. 26–40. doi: 10.1137/S0036142900381497
  • N. Bodard, R. Bouffanais, and M.O. Deville, Solution of moving-boundary problems by the spectral element method, Appl. Numer. Math. 58 (2008), pp. 968–984. doi: 10.1016/j.apnum.2007.04.009
  • T.J. Bridges and S. Reich, Multi-symplectic spectral discretizations for the Zakharov–Kuznetsov and shallow water equations, Physica D: Nonlinear Phenomena 152 (2001), pp. 491–504. doi: 10.1016/S0167-2789(01)00188-9
  • L. Brugnano, F. Iavernaro, and D. Trigiante, Hamiltonian boundary value methods(Energy preserving discrete line integral methods), J. Numer. Anal. Ind. Appl. Math. 5 (2010), pp. 17–37.
  • C. Canuto, M.Y. Hussaini, A. Quarteroni, M.Y. Hussaini, and T.A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer, Berlin, 2006.
  • C. Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zang, Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics, Springer, Berlin, 2007.
  • E. Celledoni, R.I. McLachlan, D.I. McLaren, B. Owren, G.R.W. Quispel, and W.M. Wright, Energy-preserving Runge–Kutta methods, Math. Model. Numer. Anal. 43 (2009), pp. 645–649. doi: 10.1051/m2an/2009020
  • E. Celledoni, V. Grimm, R.I. McLachlan, D.I. McLaren, D. O'Neale, B. Owren, and G.R.W. Quispel, Preserving energy resp. dissipation in numerical PDEs using the ‘Average Vector Field’ method, J. Comput. Phys. 231 (2012), pp. 6770–6789. doi: 10.1016/j.jcp.2012.06.022
  • P. Chartier, E. Faou, and A. Murua, An algebraic approach to invariant preserving integators: The case of quadratic and Hamiltonian invariants, Numer. Math. 103 (2006), pp. 575–590. doi: 10.1007/s00211-006-0003-8
  • J.B. Chen and M.Z. Qin, Multi-symplectic fourier pseudospectral method for the nonlinear Schrödinger equation, Electron. Trans. Numer. Anal. 12 (2001), pp. 193–204.
  • M. Dehghan and M. Sabouri, A Legendre spectral element method on a large spatial domain to solve the predator-prey system modeling interacting populations, Appl. Math. Model. 37 (2013), pp. 1028–1038. doi: 10.1016/j.apm.2012.03.030
  • R.K. Dodd, J.C. Eibeck, J.D. Gibbon, and H.C. Morris, Solitons and Nonlinear Wave Equation, Academic Press, New York, 1982.
  • E. Faou, E. Hairer, and T.-L. Pham, Energy conservation with non-Symplectic methods: Examples and counter-examples, BIT 44 (2004), pp. 699–709. doi: 10.1007/s10543-004-5240-6
  • K. Feng, Difference schemes for Hamiltonian formalism and symplectic geometry, J. Comput. Math. 4 (1986), pp. 279–289.
  • K. Feng and M.Z. Qin, Symplectic Geometric Algorithms for Hamiltonian Systems, Springer-Verlag/Zhejiang Science and Technology Publishing House, Berlin/Hangzhou, 2010.
  • B. Fornberg, A Practical Guide to Pseudospectral Methods, Cambridge University Press, Cambridge, 1996.
  • F.X. Giraldo, Strong and weak Lagrange-Galerkin spectral element methods for the shallow water equations, Comput. Math. Appl. 45 (2003), pp. 97–121. doi: 10.1016/S0898-1221(03)80010-X
  • F.X. Giraldo, Strong and weak Lagrange–Galerkin spectral element methods for the shallow water equations, Comput. Math. Appl. 45 (2003), pp. 97–121. doi: 10.1016/S0898-1221(03)80010-X
  • Y.Z. Gong, J.X Cai, and Y.S. Wang, Some new structure-preserving algorithms for general multi-symplectic formulations of Hamiltonian PDEs, J. Comput. Phys. 279 (2014), pp. 80–102. doi: 10.1016/j.jcp.2014.09.001
  • O. Gonzalez, Time integration and discrete Hamiltonian systems, J. Nonlinear Sci. 6 (1996), pp. 449–467. doi: 10.1007/BF02440162
  • E. Hairer, Energy-preserving variant of collocation methods, J. Numer. Anal. Ind. Appl. Math. 5 (2010), pp. 73–84.
  • E. Hairer, S.P. Norsett, and G. Wanner, Solving Ordinary Differential Equations I, Nonstiff Problems, 2nd ed., Springer-Verlag, Berlin, 1993.
  • A. Hasegawa, Optical Solitons in Fibers, Springer, Berlin, 1989.
  • F. Iavernaro and D. Trigiante, High-order symmetric schemes for the energy conservation of polynomial Hamiltonian problems, J. Numer. Anal. Ind. Appl. Math. 4 (2009), pp. 87–101.
  • A. Iserles, A First Course in the Numerical Analysis of Differential Equations, 2nd ed., Cambridge University Press, Cambridge, 2008.
  • M.S. Ismail, Numerical solution of coupled nonlinear Schröinger equation by Galerkin method, Math. Comput. Simul. 78 (2008), pp. 532–547. doi: 10.1016/j.matcom.2007.07.003
  • O. Karakashian, G.D. Akrivis, and V.A. Dougalis, On optimal order error estimates for the nonlinear Schröinger equation, SIAM J. Numer. Anal. 30 (1993), pp. 377–400. doi: 10.1137/0730018
  • D. Komatitsch and J. Tromp, Introduction to the spectral element method for three-dimensional seismic wave propagation, Geophys. J. Int. 139 (1999), pp. 806–822. doi: 10.1046/j.1365-246x.1999.00967.x
  • K.Z. Korczak and A.T. Patera, An isoparametric spectral element method for solution of the Navier–Stokes equations in complex geometry, J. Comput. Phys. 62 (1986), pp. 361–382. doi: 10.1016/0021-9991(86)90134-8
  • J.M. Lindquist, F.X. Giraldo, and B. Neta, Klein–Gordon equation with advection on unbounded domains using spectral elements and high-order nonreflecting boundary conditions, Appl. Math. Comput. 217 (2010), pp. 2710–2723.
  • T. Matsuo, High-order schemes for conservative or dissipative systems, J. Comput. Appl. Math. 152 (2003), pp. 305–317. doi: 10.1016/S0377-0427(02)00713-6
  • R. McLachlan, Symplectic integration of Hamiltonian wave equations, Numer. Math. 66 (1993), pp. 465–492. doi: 10.1007/BF01385708
  • R.I. McLachlan, G.R.W. Quispel, and N. Robidoux, Geometric integration using discrete gradients, Phil. Trans. R. Soc. A 357 (1999), pp. 1021–1045. doi: 10.1098/rsta.1999.0363
  • O.Z. Mehdizadeh and M. Paraschivoiu, Investigation of a two-dimensional spectral element method for Helmholtz's equation, J. Comput. Phys. 189 (2003), pp. 111–129. doi: 10.1016/S0021-9991(03)00204-3
  • E.H. Mund, Spectral element solutions for the PN neutron transport equations, Comput. Fluids 43 (2011), pp. 102–106. doi: 10.1016/j.compfluid.2010.06.010
  • A.T. Patera, A spectral element method for fluid dynamics: laminar flow in a channel expansion, J. Comput. Phys. 54 (1984), pp. 468–488. doi: 10.1016/0021-9991(84)90128-1
  • G.R.W. Quispel and D.I. McLaren, A new class of energy-preserving numerical integration methods, J. Phys. A: Math. Theoret. 41 (2008), p. 045206. doi: 10.1088/1751-8113/41/4/045206
  • J.M. Sanz-Serna, Runge-Kutta schemes for Hamiltonian systems, BIT 28 (1988), pp. 877–883. doi: 10.1007/BF01954907
  • G. Seriani and S.P. Oliveira, Dispersion analysis of spectral element methods for elastic wave propagation, Wave Motion 45 (2008), pp. 729–744. doi: 10.1016/j.wavemoti.2007.11.007
  • J. Shen, A new dual-Petrov-Galerkin method for third and higher odd-order differential equations: Application to the KDV equation, SIAM J. Numer. Anal. 41 (2003), pp. 1595–1619. doi: 10.1137/S0036142902410271
  • J. Shen and T. Tang, Spectral and High-order Methods with Applications, Science Press, Beijing, 2006.
  • Z.-Z. Sun and D.-D. Zhao, On the L∞ convergence of a difference scheme for coupled nonlinear Schrödinger equations, Comput. Math. Appl. 59 (2010), pp. 3286–3300. doi: 10.1016/j.camwa.2010.03.012
  • M. Thalhammer, High-order exponential operator splitting methods for time-dependent Schröinger equations, SIAM J. Numer. Anal. 46 (2008), pp. 2022–2038. doi: 10.1137/060674636
  • L.J.P. Timmermans, P.D. Minev, and F.N. van de Vosse, An approximate projection scheme for incompressible flow using spectral elements, Int. J. Num. Meth. 22 (1996), pp. 673–688. Fluids. doi: 10.1002/(SICI)1097-0363(19960415)22:7<673::AID-FLD373>3.0.CO;2-O
  • Y.-S. Wang, Q.-H. Li, and Y.-Z. Song, Two new simple multi-symplectic schemes for the nonlinear Schrödinger equation, Chinese Phys. Lett. 25 (2008), pp. 1538–1540. doi: 10.1088/0256-307X/25/2/049
  • T. Wang, B. Guo, and Q. Xu, Fourth-order compact and energy conservative difference schemes for the nonlinear Schröinger equation in two dimensions, J. Comput. Phys. 243 (2013), pp. 382–399. doi: 10.1016/j.jcp.2013.03.007
  • E. Zampieri and L.F. Pavarino, An explicit second order spectral element method for acoustic waves, Adv. Comput. Math. 25 (2006), pp. 381–401. doi: 10.1007/s10444-004-7626-z
  • J.M. Zhao, L.H. Liu, P.-F. Hsu, and J.Y. Tan, Spectral element method for vector radiative transfer equation, J. Quant. Spectrosc. Radiat. 111 (2010), pp. 433–446. doi: 10.1016/j.jqsrt.2009.10.009
  • Y.L. Zhou, Applications of Discrete Functional Analysis to the Finite Difference Method, International Academic Publishers, Beijing, 1990.
  • W. Zhu and D.A. Kopriva, A spectral element approximation to price European options. II. The Black–Scholes model with two underlying assets, J. Sci. Comput. 39 (2009), pp. 323–339. doi: 10.1007/s10915-009-9270-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.