402
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

The effect of network topology on the spread of computer viruses: a modelling study

&
Pages 1591-1608 | Received 30 Mar 2015, Accepted 02 Jun 2016, Published online: 07 Sep 2016

References

  • R. Albert and A.-L. Barabási, Statistical mechanics of complex networks, Rev. Mod. Phys. 74(1) (2002), pp. 47–97. doi: 10.1103/RevModPhys.74.47
  • M. Barthélemy, A. Barrat, R. Pastor-Satorras, and A. Vespignani, Velocity and hierarchical spread of epidemic outbreaks in scale-free networks, Phys. Rev. Lett. 92(7) (2004) (Article ID 178701).
  • C. Castellano and R. PastorSatorras, Thresholds for epidemic spreading in networks, Phys. Rev. Lett. 105(21) (2010) (Article ID 218701). doi: 10.1103/PhysRevLett.105.218701
  • L.-C. Chen and K.M. Carley, The impact of countermeasure propagation on the prevalence of computer viruses, IEEE Trans. Syst. Man Cybern. B, Cybern. 34(2) (2004), pp. 823–833. doi: 10.1109/TSMCB.2003.817098
  • L. Chen, K. Hattaf, and J. Sun, Optimal control of a delayed SLBS computer virus model, Phys. A 427(1) (2015), pp. 244–250. doi: 10.1016/j.physa.2015.02.048
  • F. Cohen, Computer viruses: Theory and experiments, Comput. Secur. 6(1) (1987), pp. 22–35. doi: 10.1016/0167-4048(87)90122-2
  • Z. Dezsö and A.-L. Barabási, Halting viruses in scale-free networks, Phys. Rev. E 65(5) (2002) (Article ID 055103). doi: 10.1103/PhysRevE.65.055103
  • T. Dong, X. Liao, and H. Li, Stability and Hopf bifurcation in a computer virus model with multistate antivirus, Abstr. Appl. Anal. 2012 (2012) (Article ID 841987).
  • M. Draief, A. Ganesh, and L. Massouilié, Thresholds for virus spread on networks, Ann. Appl. Probab. 18(2) (2008), pp. 359–378. doi: 10.1214/07-AAP470
  • M. Faloutsos, P. Faloutsos, and C. Faloutsos, On power-law relationships of the Internet topology, ACM SIGCOMM Comput. Commun. Rev. 29(4) (1999), pp. 251–262. doi: 10.1145/316194.316229
  • M. Faloutsos, P. Faloutsos, and C. Faloutsos, Power laws and the AS-level Internet topology, IEEE/ACM Trans. Netw. 11 (2003), pp. 514–524. doi: 10.1109/TNET.2003.815300
  • L. Feng, X. Liao, H. Li, and Q. Han, Hopf bifurcation analysis of a delayed viral infection model in computer networks, Math. Comput. Model. 56(78) (2012), pp. 167–179. doi: 10.1016/j.mcm.2011.12.010
  • X. Fu, M. Small, D.M. Walker, and H. Zhang, Epidemic dynamics on scale-free networks with piecewise linear infectivity and immunization, Phys. Rev. E 77(3) (2008) (Article ID 036113). doi: 10.1103/PhysRevE.77.036113
  • C. Gan, X. Yang, W. Liu, and Q. Zhu, A propagation model of computer virus with nonlinear vaccination probability, Commun. Nonlinear Sci. Numer. Simul. 19(1) (2014), pp. 92–100. doi: 10.1016/j.cnsns.2013.06.018
  • C. Gan, X. Yang, W. Liu, Q. Zhu, J. Jin, and L. He, Propagation of computer viruses both across the Internet and external computers: A complex-network approach, Commun. Nonlinear Sci. Numer. Simul. 19(8) (2014), pp. 2785–2792. doi: 10.1016/j.cnsns.2013.12.026
  • C. Gan, X. Yang, W. Liu, Q. Zhu, and X. Zhang, Propagation of computer virus under human intervention: A dynamical model, Discrete Dyn. Nat. Soc. 2012 (2012) (Article ID 106950). doi: 10.1155/2012/106950
  • C. Gan, X. Yang, Q. Zhu, and J. Jian, The combined impact of external computers and network topology on the spread of computer viruses, Int. J. Comput. Math. 91(12) (2014), pp. 2491–2506. doi: 10.1080/00207160.2014.888421
  • C. Griffin and R. Brooks, A note on the spread of worms in scale-free networks, IEEE Trans. Syst. Man Cybern. B Cybern. 36(1) (2006), pp. 198–202. doi: 10.1109/TSMCB.2005.854498
  • M. Karsai, M. Kivelä, R.K. Pan, K. Kaski, J. Kertész, A.-L. Barabási, and J. Saramäki, Small but slow world: How network topology and burstiness slow down spreading, Phys. Rev. E 83(2) (2011) (Article ID 025102). doi: 10.1103/PhysRevE.83.025102
  • J.O. Kephart and S.R. White, Directed-graph epidemiological models of computer viruses, Proc. 1991 IEEE Comput. Soc. Symp. Res. Secur. Privacy, Oakland, CA, USA, 1991, pp. 343–359.
  • A. Lajmanovich and J.A. Yorke, A deterministic model for gonorrhea in a nonhomogenous population, Math. Biosci. 28(3–4) (1976), pp. 221–236. doi: 10.1016/0025-5564(76)90125-5
  • A.L. Lloyd and R.M. May, How viruses spread among computers and people, Science 292(5520) (2001), pp. 1316–1317. doi: 10.1126/science.1061076
  • B.K. Mishra and S.K. Pandey, Dynamic model of worms with vertical transmission in computer network, Appl. Math. Comput. 217(21) (2011), pp. 8438–8446.
  • Y. Moreno, R. Pastor-Satorras, and A. Vespignani, Epidemic outbreaks in complex heterogeneous networks, Eur. Phys. J. B 26(4) (2002), pp. 521–529.
  • W.H. Murray, The application of epidemiology to computer viruses, Comput. Secur. 7(2) (1988), pp. 130–150. doi: 10.1016/0167-4048(88)90327-6
  • A. d'Onofrio, A note on the global behavior of the network-based SIS epidemic model, Nonlinear Anal. Real World Appl. 9(4) (2008), pp. 1567–1572. doi: 10.1016/j.nonrwa.2007.04.001
  • R. Pastor-Satorras and A. Vespignani, Epidemic spreading in scale-free networks, Phys. Rev. Lett. 86(14) (2001), pp. 3200–3203. doi: 10.1103/PhysRevLett.86.3200
  • R. Pastor-Satorras and A. Vespignani, Epidemic dynamics and endemic states in complex networks, Phys. Rev. E 63(6) (2001) (Article ID 066117). doi: 10.1103/PhysRevE.63.066117
  • R. Pastor-Satorras and A. Vespignani, Immunization of complex networks, Phys. Rev. E 65(3) (2002) (Article ID 036104).
  • J. Ren, X. Yang, L.-X. Yang, Y. Xu, and F. Yang, A delayed computer virus propagation model and its dynamics, Chaos Solitons Fractals 45(1) (2012), pp. 74–79. doi: 10.1016/j.chaos.2011.10.003
  • J. Ren, X. Yang, Q. Zhu, L.-X. Yang, and C. Zhang, A novel computer virus model and its dynamics, Nonlinear Anal. Real World Appl. 13(1) (2012), pp. 376–384. doi: 10.1016/j.nonrwa.2011.07.048
  • R.C. Robinson, An Introduction to Dynamical Systems: Continuous and Discrete, Prentice Hall, Upper Saddle River, NJ, 2012.
  • P. Szor, The Art of Computer Virus Research and Defense, Addison-Wesley Education Publishers Inc., 2005.
  • O.A. Toutonji, S.-M. Yoo, and M. Park, Stability analysis of VEISV propagation modeling for network worm attack, Appl. Math. Model. 36(6) (2012), pp. 2751–2761. doi: 10.1016/j.apm.2011.09.058
  • L.S. Wen and J. Zhong, Global asymptotic stability and a property of the SIS model on bipartite networks, Nonlinear Anal. Real World Appl. 13(2) (2012), pp. 967–976. doi: 10.1016/j.nonrwa.2011.09.003
  • J.C. Wierman and D.J. Marchette, Modeling computer virus prevalence with a susceptible-infected-susceptible model with reintroduction, Comput. Statist. Data Anal. 45(1) (2004), pp. 3–23. doi: 10.1016/S0167-9473(03)00113-0
  • X. Yang and L.-X. Yang, Towards the epidemiological modeling of computer viruses, Discrete Dyn. Nat. Soc. 2012 (2012) (Article ID 259671).
  • L.-X. Yang and X. Yang, The pulse treatment of computer viruses: A modeling study, Nonlinear Dyn. 76(2) (2014), pp. 1379–1393. doi: 10.1007/s11071-013-1216-x
  • L.-X. Yang and X. Yang, A new epidemic model of computer viruses, Commun. Nonlinear Sci. Numer. Simul. 19(6) (2014), pp. 1935–1944. doi: 10.1016/j.cnsns.2013.09.038
  • L.-X. Yang, X. Yang, J. Liu, Q. Zhu, and C. Gan, Epidemics of computer viruses: A complex-network approach, Appl. Math. Comput. 219(16) (2013), pp. 8705–8717.
  • L.-X. Yang, X. Yang, L. Wen, and J. Liu, A novel computer virus propagation model and its dynamics, Int. J. Comput. Math. 89(17) (2012), pp. 2307–2314. doi: 10.1080/00207160.2012.715388
  • L.-X. Yang, X. Yang, Q. Zhu, and L. Wen, A computer virus model with graded cure rates, Nonlinear Anal. Real World Appl. 14(1) (2013), pp. 414–422. doi: 10.1016/j.nonrwa.2012.07.005
  • J.A. Yorke, Invariance for ordinary differential equations, Theory Comput. Syst. 1 (1967), pp. 353–372.
  • C. Zhang, Y. Zhao, and Y. Wu, An impulse model for computer viruses, Discrete Dyn. Nat. Soc. 2012 (2012) (Article ID 260962).
  • C. Zhang, Y. Zhao, Y. Wu, and S. Deng, A stochastic dynamic model of computer viruses, Discrete Dyn. Nat. Soc. 2012 (2012) (Article ID 264874).
  • T. Zhou, J.G. Liu, W.J. Bai, G.R. Chen and B.H. Wang, Behaviors of susceptible-infected epidemics on scale-free networks with identical infectivity, Phys. Rev. E 74(5) (2006) (Article ID 056109).
  • G.H. Zhu, X.C. Fu, and G.R. Chen, Global attractivity of a network-based epidemic SIS model with nonlinear infectivity, Commun. Nonlinear Sci. Numer. Simul. 17(6) (2012), pp. 2588–2594. doi: 10.1016/j.cnsns.2011.08.039
  • Q. Zhu, X. Yang, L.-X. Yang, and C. Zhang, Optimal control of computer virus under a delayed model, Appl. Math. Comput. 218(23) (2012), pp. 11613–11619.
  • Q. Zhu, X. Yang, L.-X. Yang, and X. Zhang, A mixing propagation model of computer viruses and countermeasures, Nonlinear Dyn. 73(3) (2013), pp. 1433–1441. doi: 10.1007/s11071-013-0874-z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.