152
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Pricing American options under jump-diffusion models using local weak form meshless techniques

&
Pages 1694-1718 | Received 15 Jul 2015, Accepted 06 Aug 2016, Published online: 03 Sep 2016

References

  • L. Andersen and J. Andreasen, Jump-diffusion processes: Volatility smile fitting and numerical methods for option pricing, Rev. Derivatives Res. 4 (2000), pp. 231–262. doi: 10.1023/A:1011354913068
  • S.N. Atluri and S. Shen, Combination of meshless local weak and strong (MLWS) forms to solve the two dimensional hyperbolic telegraph equation, CMES 3 (2002), pp. 11–51.
  • S.N. Atluri and T. Zhu, A new meshless Local Petrov–Galerkin (MLPG) approach in computational mechanics, Comput. Mech. 22 (1998), pp. 117–127. doi: 10.1007/s004660050346
  • L.V. Ballestra and G. Pacelli, Computing the survival probability density function in jump-diffusion models: A new approach based on radial basis functions, Eng. Anal. Bound. Elem. 35 (2011), pp. 1075–1084. doi: 10.1016/j.enganabound.2011.02.008
  • L.V. Ballestra and G. Pacelli, A radial basis function approach to compute the first-passage probability density function in two-dimensional jump-diffusion models for financial and other applications, Eng. Anal. Bound. Elem. 36 (2012), pp. 1546–1554. doi: 10.1016/j.enganabound.2012.04.011
  • L.V. Ballestra and G. Pacelli, Pricing European and American options with two stochastic factors: A highly efficient radial basis function approach, J. Econom. Dynam. Control 37 (2013), pp. 1142–1167. doi: 10.1016/j.jedc.2013.01.013
  • L.V. Ballestra and C. Sgarra, The evaluation of American options in a stochastic volatility model with jumps: An efficient finite element approach, Comput. Math. Appl. 60 (2010), pp. 1571–1590. doi: 10.1016/j.camwa.2010.06.040
  • T. Belytschko, Y.Y. Lu, and L. Gu, Element-free Galerkin methods, Internat. J. Numer. Methods Engrg. 37 (1994), pp. 229–256. doi: 10.1002/nme.1620370205
  • F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ. 81 (1973), pp. 637–659. doi: 10.1086/260062
  • P. Buche, An Introduction to Exotic Option Pricing, Chapman and Hall/CRC Financial Mathematics Series, New York, 2012.
  • R.E. Carlson and T.A. Foley, The parameter R2 in multiquadric interpolation, Comput. Math. Appl. 21 (1991), pp. 29–42. doi: 10.1016/0898-1221(91)90123-L
  • R. Chan and S. Hubbert, A numerical study of radial basis function based methods for options pricing under the one dimension jump-diffusion model, Tech. Rep., 2010. Available at arXiv.org.1011.5650.
  • A.H.D. Cheng, M.A. Golberg, E.J. Kansa, and G. Zammito, Exponential convergence and H-c multiquadric collocation method for partial differential equations, Numer. Methods Partial Differential Euations 19 (2003), pp. 571–594. doi: 10.1002/num.10062
  • R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman and Hall/CRC, New York, 2004.
  • R. Cont and E. Voltchkova, A finite difference scheme for option pricing in jump diffusion and exponential Lévy models, SIAM J. Numer. Anal. 43 (2005), pp. 1596–1626. doi: 10.1137/S0036142903436186
  • Y. d'Halluin, P.A. Forsyth, and G. Labahn, A penalty method for American options with jump diffusion processes, Numer. Math. 97 (2004), pp. 321–352. doi: 10.1007/s00211-003-0511-8
  • Y. d'Halluin, P.A. Forsyth, and K.R. Vetzal, Robust numerical methods for contingent claims under jump diffusion processes, IMA J. Numer. Anal. 25 (2005), pp. 87–112. doi: 10.1093/imanum/drh011
  • G.E. Fasshauer and J.G. Zhang, On choosing ‘optimal’ shape parameters for RBF approximation, Numer. Algorithms 45 (2007), pp. 345–368. doi: 10.1007/s11075-007-9072-8
  • B. Fornberg, E. Larsson, and N. Flyer, Stable computations with Gaussian radial basis functions, SIAM J. Sci. Comput. 33 (2011), pp. 869–892. doi: 10.1137/09076756X
  • G.H. Golub and C.F.V. Loan, Matrix Computation, The Johns Hopkins University Press, London, 1989.
  • J. Huang and J.S. Pang, Option pricing and linear complementarity, J. Comput. Finance 2 (1998), pp. 31–60. doi: 10.21314/JCF.1998.018
  • M. Jeanblanc, M. Yor, and M. Chesney, Mathematical Methods for Financial Markets, Springer, London, 2009.
  • S. Kazem, J.A. Rad, and K. Parand, A meshless method on non-Fickian flows with mixing length growth in porous media based on radial basis functions: A comparative study, Comput. Math. Appl. 64 (2012), pp. 399–412. doi: 10.1016/j.camwa.2011.10.052
  • S.G. Kou, A jump-diffusion model for option pricing, Manage. Sci. 48 (2002), pp. 1086–1101. doi: 10.1287/mnsc.48.8.1086.166
  • A. Kuznetsov, The Complete Guide to Capital Markets for Quantitative Professionals, McGraw-Hill, New York, 2009.
  • Y. Kwon and Y. Lee, A second-order tridiagonal method for American options under jump-diffusion models, SIAM J. Sci. Comput. 33 (2011), pp. 1860–1872. doi: 10.1137/100806552
  • E. Larsson, K. Ahlander, and A. Hall, Multi-dimensional option pricing using radial basis functions and the generalized Fourier transform, J. Comput. Appl. Math. 222 (2008), pp. 175–192. doi: 10.1016/j.cam.2007.10.039
  • E. Larsson and B. Fornberg, A numerical study of some radial basis function based solution methods for elliptic PDEs, Comput. Math. Appl. 46 (2003), pp. 891–902. doi: 10.1016/S0898-1221(03)90151-9
  • H. Lin and S.N. Atluri, Meshless local Petrov–Galerkin (MLPG) method for convection-diffusion problems, Comput. Model. Eng. Sci. 1 (2000), pp. 45–60.
  • G. Liu and Y. Gu, An Introduction to Meshfree Methods and Their Programing, Springer, Netherlands, 2005.
  • W.K. Liu, S. Jun, and Y.F. Zhang, Reproducing kernel particle methods, Internat. J. Numer. Methods Fluids 20 (1995), pp. 1081–1106. doi: 10.1002/fld.1650200824
  • R. Lord, F. Fang, F. Bervoets, and C.W. Oosterlee, A fast and accurate FFT-based method for pricing early-exercise options under Lévy processes, SIAM J. Sci. Comput. 30 (2008), pp. 1678–1705. doi: 10.1137/070683878
  • J.M. Melenk and I. Babuška, The partition of unity finite element method: Basic theory and applications, Comput. Methods. Appl. Mech. Eng. 139 (1996), pp. 289–314. doi: 10.1016/S0045-7825(96)01087-0
  • R.C. Merton, Option pricing when underlying stock returns are discontinuous, J. Financ. Econ. 3 (1976), pp. 125–144. doi: 10.1016/0304-405X(76)90022-2
  • K. Parand and J.A. Rad, Kansa method for the solution of a parabolic equation with an unknown spacewise-dependent coefficient subject to an extra measurement, Comput. Phys. Commun. 184 (2013), pp. 582–595. doi: 10.1016/j.cpc.2012.10.012
  • U. Pettersson, E. Larsson, G. Marcusson, and J. Persson, Improved radial basis function methods for multi-dimensional option pricing, J. Comput. Appl. Math. 222 (2008), pp. 82–93. doi: 10.1016/j.cam.2007.10.038
  • J.A. Rad, K. Parand, and S. Abbasbandy, Local weak form meshless techniques based on the radial point interpolation (RPI) method and local boundary integral equation (LBIE) method to evaluate European and American options, Commun. Nonlinear Sci. Numer. Simul. 22 (2015), pp. 1178–1200. doi: 10.1016/j.cnsns.2014.07.015
  • J.A. Rad, K. Parand, and S. Abbasbandy, Pricing European and American options using a very fast and accurate scheme: The meshless local Petrov–Galerkin method, Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 85 (2015), pp. 337–351. doi: 10.1007/s40010-015-0207-3
  • J.A. Rad, K. Parand, and L.V. Ballestra, Pricing European and American options by radial basis point interpolation, Appl. Math. Comput. 251 (2015), pp. 363–377. doi: 10.1016/j.amc.2014.11.016
  • A. Saib, D. Tangman, and M. Bhuruth, A new radial basis functions method for pricing American options under Merton's jump-diffusion model, Int. J. Comput. Math. 89 (2012), pp. 1164–1185. doi: 10.1080/00207160.2012.690034
  • S. Salmi, Numerical methods for pricing options under jump-diffusion processes, Ph.D. thesis, University of Jyvaskyla, 2013.
  • S. Salmi and J. Toivanen, An iterative method for pricing American options under jump-diffusion models, Appl. Numer. Math. 61 (2011), pp. 821–831. doi: 10.1016/j.apnum.2011.02.002
  • S. Salmi and J. Toivanen, Comparison and survey of finite difference methods for pricing American options under finite activity jump-diffusion models, Int. J. Comput. Math. 89 (2012), pp. 1112–1134. doi: 10.1080/00207160.2012.669475
  • S. Salmi, J. Toivanen, and L. von Sydow, An IMEX-scheme for pricing options under stochastic volatility models with jumps, SIAM J. Sci. Comput. 36 (2015), pp. B817–B834. doi: 10.1137/130924905
  • K. Sato, Levy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge, UK, 1999.
  • J. Sladek, V. Sladek, J. Krivacek, and C. Zhang, Local BIEM for transient heat conduction analysis in 3-D axisymmetric functionally graded solids, Comput. Mech. 32 (2003), pp. 169–176. doi: 10.1007/s00466-003-0470-z
  • L. von Sydow, J. Toivanen, and C. Zhang, Adaptive finite differences and IMEX time-stepping to price options under Bates model, Int. J. Comput. Math. (2015). doi:10.1080/00207160.2015.1072173.
  • J. Toivanen, Numerical valuation of European and American options under Kou's jump-diffusion model, SIAM J. Sci. Comput. 30 (2008), pp. 1949–1970. doi: 10.1137/060674697
  • H. Wendland, Scattered Data Approximation, Cambridge University Press, New York, 2005.
  • P. Wilmott, J. Dewynne, and S. Howison, Option Pricing: Mathematical Models and Computation, Oxford Financial Press, Oxford, 1996.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.