253
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Statistical fidelity: a tool to quantify the similarity between multi-variable entities with application in complex networks

&
Pages 1787-1805 | Received 05 Feb 2015, Accepted 29 May 2016, Published online: 04 Nov 2016

References

  • R. Albert and A.-L. Barabási, Statistical mechanics of complex networks, Rev. Mod. Phys. 74(1) (2002), p. 47. doi: 10.1103/RevModPhys.74.47
  • U. Alon, Network motifs: Theory and experimental approaches, Nat. Rev. Genetics 8(6) (2007), pp. 450–461. doi: 10.1038/nrg2102
  • S. Bandyopadhyay, A.R. Rao, B.K. Sinha, and B.K. Sinha, Models for Social Networks with Statistical Applications, Vol. 13, Sage, Thousand Oaks, CA, 2011.
  • A.-L. Barabási and R. Albert, Emergence of scaling in random networks, Science 286(5439) (1999), pp. 509–512. doi: 10.1126/science.286.5439.509
  • M. Bastian, S. Heymann, and M. Jacomy, Gephi: An Open Source Software for Exploring and Manipulating Networks, International AAAI Conference on Weblogs and Social Media, Vol. 8, San Jose, CA, USA, 2009, pp. 361–362.
  • A. Bigdeli, A. Tizghadam, and A. Leon-Garcia, Comparison of Network Criticality, Algebraic Connectivity, and Other Graph Metrics, Proceedings of the First Annual Workshop on Simplifying Complex Network for Practitioners, ACM, Venice, Italy, 2009, p. 4.
  • N. Caseiro and P. Trigo, Comparing Complex Networks: An Application to Emergency Managers' Mental Models, 2012 Third Brazilian Workshop on Social Simulation (BWSS), IEEE, 2012, pp. 128–131. 10.1109/BWSS.2012.15.
  • Y.W. Chen, L.F. Zhang, and J.P. Huang, The Watts–Strogatz network model developed by including degree distribution: Theory and computer simulation, J. Phys. A: Math. Theor. 40(29) (2007), pp. 8237–8246. doi: 10.1088/1751-8113/40/29/003
  • L. da F. Costa, F.A. Rodrigues, G. Travieso, and P.R.V. Boas, Characterization of complex networks: A survey of measurements, Adv. Phys. 56(1) (2007), pp. 167–242. doi: 10.1080/00018730601170527
  • L. Daqing, K. Kosmidis, A. Bunde, and S. Havlin, Dimension of spatially embedded networks, Nat. Phys. 7(6) (2011), pp. 481–484. doi: 10.1038/nphys1932
  • D. Easley and J. Kleinberg, Networks, Crowds, and Markets, Cambridge University Press, New York, 2010.
  • J.-Q. Fang, X.-F. Wang, Z.-G. Zheng, Q. Bi, Z.-R. Di, and L. Xiang, New interdisciplinary science: Network science (1), Prog. Phys. Nanjing 27(3) (2007), p. 239.
  • G. Fowler, Facebook: One billion and counting, Wall Street J. (2012), p. B1.
  • L.C. Freeman, The Development of Social Network Analysis: A Study in the Sociology of Science, Vol. 1, Empirical Press, Vancouver, 2004.
  • A. Hashmi, F. Zaidi, A. Sallaberry, and T. Mehmood, Are all Social Networks Structurally Similar?, Proceedings of the 2012 International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2012), IEEE Computer Society, Istanbul, Turkey, 2012, pp. 310–314.
  • M.O. Jackson, An overview of social networks and economic applications, The Handbook of Social Economics 1 (2010), pp. 511–585. doi: 10.1016/B978-0-444-53187-2.00012-7
  • B. Kantarci and V. Labatut, Classification of Complex Networks Based on Topological Properties, Proceedings of the Third International Conference on Social Computing and Its Applications, 2013.
  • J. Kunegis, D. Fay, and C. Bauckhage, Network Growth and the Spectral Evolution Model, Proceedings of the 19th ACM International Conference on Information and Knowledge Management, ACM, Toronto, Canada, 2010, pp. 739–748.
  • D. Lazer, A. Pentland, L. Adamic, S. Aral, A.-L. Barabasi, D. Brewer, N. Christakis, N. Contractor, J. Fowler, M. Gutmann, T. Jebara, G. King, M. Macy, D. Roy, and M. Van Alstyne, Life in the network: The coming age of computational social science, Science (New York, NY) 323(5915) (2009), pp. 721–723. doi: 10.1126/science.1167742
  • E.A. Leicht, P. Holme, and M.E.J. Newman, Vertex similarity in networks, Phys. Rev. E 73(2) (2006), p. 026120. doi: 10.1103/PhysRevE.73.026120
  • J. Leskovec, Stanford large network dataset collection, preprint (2011). Available at http://snap.stanford.edu/data/index.html
  • W. Li and J.-Y. Yang, Comparing networks from a data analysis perspective, in Complex Sciences, Springer, J. Zhou, ed., Springer, Berlin, 2009, pp. 1907–1916.
  • G. Long and C. Xu, The fractal dimensions of complex networks, Chin. Phys. Lett. 26(8) (2009), p. 088901. doi: 10.1088/0256-307X/26/8/088901
  • P.C. Mahalanobis, On the generalized distance in statistics, Proc. Natl. Inst. Sci. (Calcutta) 2 (1936), pp. 49–55.
  • B.B. Mandelbrot, The Fractal Geometry of Nature, Macmillan, New York, 1983.
  • A. Masoudi-Nejad, F. Schreiber, and Z.R.M. Kashani, Building blocks of biological networks: A review on major network motif discovery algorithms, IET Syst. Biol. 6(5) (2012), pp. 164–174. doi: 10.1049/iet-syb.2011.0011
  • S. Milgram, The small world problem, Psychol. Today 2(1) (1967), pp. 60–67.
  • R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon, Network motifs: Simple building blocks of complex networks, Science 298(5594) (2002), pp. 824–827. doi: 10.1126/science.298.5594.824
  • M.E.J. Newman, Modularity and community structure in networks, Proc. Natl. Acad. Sci. 103(23) (2006), pp. 8577–8582. doi: 10.1073/pnas.0601602103
  • P. Parigi and L. Sartori, The political party as a network of cleavages: Disclosing the inner structure of Italian political parties in the seventies, Soc. Networks (2012).
  • K. Park, Y. Han, and Y.-K. Lee, An Efficient Method for Computing Similarity between Frequent Subgraphs, Proceedings of the Third International Conference on Social Computing and Its Applications, Karlsruhe, Germany, 2013.
  • C. Song, S. Havlin, and H.A. Makse, Self-similarity of complex networks, Nature 433(7024) (2005), pp. 392–395. doi: 10.1038/nature03248
  • C. Song, L.K. Gallos, S. Havlin, and H.A. Makse, How to calculate the fractal dimension of a complex network: The box covering algorithm, J. Statist. Mech. Theory Exp. 2007(03) (2007), p. P03006. doi: 10.1088/1742-5468/2007/03/P03006
  • E. Spertus, M. Sahami, and O. Buyukkokten, Evaluating Similarity Measures: A Large-scale Study in the Orkut Social Network, Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, ACM, Chicago, USA, 2005, pp. 678–684.
  • S.M. Stigler, Francis Galton's account of the invention of correlation, Statist. Sci. 4(2) (1989), pp. 73–79. doi: 10.1214/ss/1177012580
  • S.H. Strogatz, Exploring complex networks, Nature 410(6825) (2001), pp. 268–276. doi: 10.1038/35065725
  • P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining, Pearson, Delhi, 2007.
  • C.-Y. Teng, Y.-R. Lin, and L.A. Adamic, Recipe Recommendation using Ingredient Networks, Proceedings of the Third Annual ACM Web Science Conference, ACM, Evanston, IL, USA, 2012, pp. 298–307.
  • A. Topirceanu, A. Duma, and M. Udrescu, Uncovering the fingerprint of online social networks using a network motif based approach, Comput. Commun. 73 (2015), pp. 167–175. doi: 10.1016/j.comcom.2015.07.002
  • A. Topirceanu, A. Iovanovici, M. Udrescu, and M. Vladutiu, Social Cities: Quality Assessment of Road Infrastructures using a Network Motif Approach, 2014 18th International Conference on System Theory, Control and Computing (ICSTCC), IEEE, Sinaia, Romania, 2014, pp. 803–808.
  • M. Tsvetovat and K.M. Carley, Generation of realistic social network datasets for testing of analysis and simulation tools, Tech. Rep., DTIC Document, 2005.
  • M. Vidal, M.E. Cusick, and A.-L. Barabasi, Interactome networks and human disease, Cell 144(6) (2011), pp. 986–998. doi: 10.1016/j.cell.2011.02.016
  • X.F. Wang and G. Chen, Complex networks: Small-world, scale-free and beyond, IEEE Circ. Syst. Mag. 3(1) (2003), pp. 6–20. doi: 10.1109/MCAS.2003.1228503
  • J. Wang and L. Rong, Evolving Small-world Networks based on the Modified BA Model, International Conference on Computer Science and Information Technology, 2008 (ICCSIT'08), IEEE, Singapore, 2008, pp. 143–146.
  • D.J. Watts and S.H. Strogatz, Collective dynamics of small-world networks, Nature 393(6684) (1998), pp. 440–442. doi: 10.1038/30918
  • S. Wernicke, Efficient detection of network motifs, IEEE/ACM Trans. Comput. Biol. Bioinform. 3(4) (2006), pp. 347–359. doi: 10.1109/TCBB.2006.51
  • S. Wernicke and F. Rasche, FANMOD: A tool for fast network motif detection, Bioinformatics 22(9) (2006), pp. 1152–1153. doi: 10.1093/bioinformatics/btl038

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.