305
Views
38
CrossRef citations to date
0
Altmetric
Original Articles

Residue-to-binary conversion for general moduli sets based on approximate Chinese remainder theorem

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1833-1849 | Received 16 Jun 2015, Accepted 01 Aug 2016, Published online: 28 Nov 2016

References

  • S. Antão and L. Sousa, The CRNS framework and its application to programmable and reconfigurable cryptography, ACM Trans. Archit. Code Optim. 9(4) (2013), article no. 33. doi: 10.1145/2400682.2400692.
  • S.F. Antão, J.C. Bajard, and L. Sousa, RNS based elliptic curve point multiplication for massive parallel architectures, Comput J. 55(5) (2011). pp. 629–647.
  • T. Arabi, VLSI challenges to more energy efficient devices, Proceedings of the IEEE International Conference on Embedded Computer Systems (SAMOS), Samos, Greece, 2010.
  • J.C. Bajard and L. Imbert, A full RNS implementation of RSA, IEEE Trans. Comput. 53(6) (2004), pp. 769–774.
  • M.A. Bayoumi and P. Srinivasan, Parallel arithmetic: from algebra to architecture, Proceedings of IEEE International Symposium on Circuits and Systems, New Orleans, LA, USA, 1990.
  • J.L. Beuchat, Some modular adders and multipliers for field programmable gate arrays, Proceedings of the International Symposium on Parallel and Distributed Processing, Nice, France, 2003.
  • B. Cao, C.H. Chang, and T. Srikanthan, A residue-to-binary converter for a new five-moduli set, IEEE Trans. Circuits Syst. I: Regular Pap. 54(5) (2007), pp. 1041–1049.
  • C.H. Chang, A.S. Molahosseini, A.A.E. Zarandi, and T.F. Tay, Residue number system: A new paradigm to datapath optimization for low-power and high-performance digital signal processing applications, IEEE Circuits Syst. Mag. 15(4) (2015), pp. 26–44.
  • J. Chen and J. Hu, Energy-efficient digital signal processing via voltage-over scaling-based residue number system, IEEE Trans. VLSI Syst. 21(7) (2013), pp. 1322–1332.
  • N.I. Chervyakov, P.A. Lyakhov, and M.G. Babenko, Digital filtering of images in a residue number system using finite-field wavelets, J. Autom. Control Comput. Sci. 48(3) (2014), pp. 180–189.
  • N.I. Chervyakov, M.G. Babenko, P.A. Lyakhov, I.N. Lavrinenko, An approximate method for comparing modular numbers and its application to the division of numbers in residue number systems, Cybernet. Syst. Anal. 50(6) (2014), pp. 977–984.
  • R. Chokshi, K.S. Berezowski, A. Shrivastava and S.J. Piestrak, Exploiting residue number system for power-efficient digital signal processing in embedded processors, Proceedings of International Conference on Compilers, Architecture, and Synthesis for Embedded Systems, Grenoble, France, 2009, pp. 19–28.
  • M. Esmaeildoust, D. Schinianakis, H. Javashi, T. Stouraitis, and K. Navi, Efficient RNS implementation of elliptic curve point multiplication over GF($p$), IEEE Trans. VLSI Syst. 21 (2013), pp. 1545–1549.
  • M. Gomathisankaran, A. Tyagi, and K. Namuduri, HORNS: A Homomorphic Encryption Scheme for Cloud Computing using Residue Number System, Proceedings of IEEE 45th Annual Conference on Information Sciences and Systems (CISS), Baltimore, MD, USA, 2011, pp. 1–5.
  • A. Hariri, K. Navi, and R. Rastegar, A new high dynamic range moduli set with efficient reverse converter, Comput. Math. Appl. 55(4) (2008), pp. 660–668.
  • C.Y. Hung and B. Parhami, An approximate sign detection method for residue numbers and its application to RNS division, Comput. Math. Appl. 27(4) (1994), pp. 23–35.
  • I. Koren, Computer Arithmetic Algorithms, 2nd ed., A K Peters, Natick, MA, 2002.
  • J.Y.S. Low and C.H. Chang, A new approach to the design of efficient residue generators for arbitrary moduli, IEEE Trans. Circuits Syst. – I: Regular Pap. 60(9) (2013), pp. 2366–2374.
  • P.M.F.M. Matutino, R. Chaves, and L. Sousa, Arithmetic-based binary-to-RNS converter modulo {2n±k} for jn-bit dynamic range, IEEE Trans. Very Large Scale Integr. Syst. 23(3) (2014), pp. 603–607.
  • A.S. Molahosseini and K. Navi, Study of the reverse converters for the large dynamic range four-moduli sets, in Applications of Digital Signal Processing, C.C. Laborde, Ed., InTech Press, 2011, Chapter 16, pp. 337–350.
  • A.S. Molahosseini, K. Navi, C. Dadkhah, O. Kavehei, and S. Timarchi, Efficient reverse converter designs for the new 4-moduli sets {2n−1, 2n, 2n+1, 22n+1−1} and {2n−1, 2n+1, 22n, 22n+1} based on new CRTs, IEEE Trans Circuits Syst. I: Regular Pap. 57(4) (2010), pp. 823–835.
  • R. Muralidharan and C.H. Chang, Radix-8 Booth encoded modulo 2n-1 multipliers with adaptive delay for high dynamic range residue number system, IEEE Trans. Circuits Syst. I: Regular Pap. 58(5) (2011), pp. 982–993.
  • K. Navi, A.S. Molahosseini, and M. Esmaeildoust, How to teach residue number system to computer scientists and engineers, IEEE Trans. Educ. 54(1) (2011), pp. 156–163.
  • A. Omondi and B. Premkumar, Residue Number Systems: Theory and Implementations, Imperial College Press, London, 2007.
  • B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs, 2nd ed., Oxford University Press, New York, 2010.
  • R.A. Patel, M. Benaissa, N. Powell, and S. Boussakta, Novel power-delay-area-efficient approach to generic modular addition, IEEE Trans. Circuits Syst. I: Regular Pap. 54 (2007), pp. 1279–1292.
  • H. Pettenghi, R. Chaves, and L. Sousa, RNS reverse converters for moduli sets with dynamic ranges up to (8n+1)-bit, IEEE Trans Circuits Syst. I: Regular Pap. 60 (2013), pp. 1487–1500.
  • S.J. Piestrak, Design of residue generators and multioperand modular adders using carry-save adders, IEEE Trans. Comput. 43(1) (1994), pp. 68–77.
  • K.H. Rosen, Elementary Number Theory and its Applications, 6th ed., Addison-Wesley, Reading, MA, 2010.
  • R. Schneiderman, DSPs evolving in consumer electronics applications, IEEE Signal Process. Mag. 27(3) (2010), pp. 6–10.
  • T. Stouraitis and V. Paliouras, Considering the alternatives in low-power design, IEEE Circuits Dev. 7 (2001), pp. 23–29.
  • T.V. Vu, Efficient implementations of the Chinese Remainder Theorem for sign detection and residue decoding, IEEE Trans. Comput. 34(7) (1985), pp. 646–651.
  • C.H. Vun, A.B. Premkumar, and W. Zhang, A new RNS based DA approach for inner product computation, IEEE Trans. Circuits Syst. I: Regular Pap. 60(8) (2013), pp. 2139–2152.
  • S.C. Yang, Toward a wireless world, IEEE Technol. Soc. Mag. 26(2) (2007), pp. 32–42.
  • A.A.E. Zarandi, A.S. Molahosseini, M. Hosseinzadeh, S. Sorouri, S. Antao, and L. Sousa, Reverse converter design via parallel-prefix adders: Novel components, methodology and implementations, IEEE Trans. VLSI Syst. 23(2) (2015), pp. 374–378.
  • R. Zimmermann, Efficient VLSI implementation of modulo (2n±1) addition and multiplication, Proceedings of the IEEE International Symposium on Computer Arithmetic, Adelaide, Australia, 1999, pp. 158–167.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.