159
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Composite adaptive anti-disturbance control for MIMO nonlinearly parameterized systems with mismatched general periodic disturbances

, , &
Pages 2089-2105 | Received 18 Feb 2016, Accepted 23 Aug 2016, Published online: 31 Jan 2017

References

  • S. Body, L.EI. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, PA, 1994.
  • W.H. Chen, Disturbance observer based control for nonlinear systems, IEEE/ASME Trans. Mechatronics 9 (2004), pp. 706–710. doi: 10.1109/TMECH.2004.839034
  • W.H. Chen, D.J. Ballance, P.J. Gawthrop, and J. O'Reilly, A nonlinear disturbance observer for robotic manipulators, IEEE Trans. Ind. Electron. 47 (2000), pp. 932–938. doi: 10.1109/41.857974
  • Z. Chen and J. Huang, Global robust output regulation for output feedback systems, IEEE Trans. Autom. Control 50 (2005), pp. 117–121. doi: 10.1109/TAC.2004.841125
  • P.N. Chen, M.X. Sun, Q.Z. Yan, and X.Y. Fang, Adaptive asymptotic rejection of unmatched general periodic disturbances in output-feedback nonlinear systems, IEEE Trans. Autom. Control 57 (2012), pp. 1056–1061. doi: 10.1109/TAC.2011.2173409
  • X.S. Chen, J. Yang, S.H. Li, and Q. Li, Disturbance observer based multi-variable control of ball mill grinding circuits, J. Process Control 19 (2009), pp. 1205–1213. doi: 10.1016/j.jprocont.2009.02.004
  • Z. Ding, Global stabilization and disturbance suppression of a class of nonlinear systems with uncertain internal model, Automatica 39 (2003), pp. 471–479. doi: 10.1016/S0005-1098(02)00251-0
  • Z. Ding, Universal disturbance rejection for nonlinear systems in output feedback form, IEEE Trans. Autom. Control 48 (2003), pp. 1222–1226. doi: 10.1109/TAC.2003.814265
  • Z.T. Ding, Asymptotic rejection of general periodic disturbances in output feedback nonlinear systems, IEEE Trans. Autom. Control 51 (2006), pp. 303–308. doi: 10.1109/TAC.2005.863523
  • Z.T. Ding, Asymptotic rejection of finite frequency modes of general periodic disturbances in output feedback nonlinear systems, Automatica 44 (2008), pp. 2317–2325. doi: 10.1016/j.automatica.2008.02.005
  • Z.T. Ding, Asymptotic rejection of unmatched general periodic disturbances in a class of non-minimum-phase non-linear systems, Int. J. Control 82 (2009), pp. 335–342. doi: 10.1080/00207170802090185
  • Z.T. Ding, Asymptotic rejection of unmatched general periodic disturbances with nonlinear lipschitz internal models, Int. J. Control 86 (2013), pp. 210–221. doi: 10.1080/00207179.2012.722231
  • J.C. Doyle, K. Glover, P.P. Khargonekar, and B.A. Francis, State-space solutions to standard H2 and H∞ control problems, IEEE Trans. Autom. Control 34 (1989), pp. 831–847. doi: 10.1109/9.29425
  • Y. Feng, X. Yu, and Z. Man, Non-singular terminal sliding mode control of rigid manipulators, Automatica 38 (2002), pp. 2159–2167. doi: 10.1016/S0005-1098(02)00147-4
  • Y. Gao and Y.J. Liu, Adaptive fuzzy optimal control using direct heuristic dynamic programming for chaotic discrete-time system, J. Vib. Control 22 (2016), pp. 595–603. doi: 10.1177/1077546314534286
  • L. Guo and S.Y. Cao, Anti-Disturbance Control for Systems with Multiple Disturbances, CRC Press, Boca Raton, FL, 2013.
  • L. Guo and W.H. Chen, Disturbance attenuation and rejection for a class of nonlinear systems via DOBC approach, Int. J. Robust Nonlinear Control 15 (2005), pp. 109–125. doi: 10.1002/rnc.978
  • L. Guo and M. Tomizuka, High-speed and high-precision motion control with an optimal hybrid feedforward controller, IEEE/ASME Trans. Mechatronics 2 (1997), pp. 110–122. doi: 10.1109/3516.588630
  • L. Guo and X.Y. Wen, Hierarchical anti-disturbance adaptive control for non-linear systems with composite disturbances and applications to missile systems, Trans. Instit. Meas. Control 33 (2011), pp. 942–956. doi: 10.1177/0142331210361555
  • J. Huang and Z. Chen, A general framework for tackling the output regulation problem, IEEE Trans. Autom. Control 49 (2004), pp. 2203–2218. doi: 10.1109/TAC.2004.839236
  • Y.H. Huang and M. Messner, A novel disturbance observer design for magnetic hard drive servo system with rotary actuator, IEEE Trans. Magn. 34 (1998), pp. 1892–1894. doi: 10.1109/20.706734
  • J. Ishikawa and M. Tomizuka, A novel add-on compensator for cancellation of pivot nonlinearities in hard disk drives, IEEE Trans. Magn. 34 (1998), pp. 1895–1897. doi: 10.1109/20.706735
  • A. Isidori, Nonlinear Control Systems, Springer-Verlag, London, (1995).
  • A. Isidori and C.I. Byrnes, Output regulation of nonlinear systems, IEEE Trans. Autom. Control 35 (1990), pp. 131–140. doi: 10.1109/9.45168
  • C. Kwan and F.L. Lewis, Robust backstepping control of nonlinear systems using neural networks, IEEE Trans. Syst., Man and Cybern., A: Syst. Humans 30 (2000), pp. 753–766. doi: 10.1109/3468.895898
  • Y. Li, H. Sun, G. Zong, and L. Hou, Disturbance-observer-based-control and L2−L∞ resilient control for Markovian jump non-linear systems with multiple disturbances and its application to single robot arm system, IET Control Theory Appl. 10 (2016), pp. 226–233. doi: 10.1049/iet-cta.2015.0430
  • Y. Li, H. Sun, G. Zong, and L. Hou, Composite anti-disturbance resilient control for Markovian jump nonlinear systems with partly unknown transition probabilities and multiple disturbances, Int. J. Robust Nonlinear Control, (2016), doi: 10.1002/rnc.3682.
  • S.H. Li, J. Yang, W.H. Chen, and X.S. Chen, Disturbance Observer based Control: Methods and Application, CRC Press, Boca Raton, FL, 2014.
  • Y.J. Liu, Y. Gao, S. Tong, and Y.M. Li, Fuzzy approximation-based adaptive backstepping optimal control for a class of nonlinear discrete-time systems with dead-zone, IEEE Trans. Fuzzy Syst. 24 (2016), pp. 16–28. doi: 10.1109/TFUZZ.2015.2418000
  • Y. Li, H. Sun, G. Zong, and L. Hou, Composite adaptive anti-disturbance resilient control for Markovian jump systems with partly known transition rate and multiple disturbances, Int. J. Adapt. Control Signal Process. (2016), doi: 10.1002/acs.2748.
  • Y.J. Liu and S. Tong, Adaptive fuzzy control for a class of unknown nonlinear dynamical systems, Fuzzy Sets Syst. 263 (2015), pp. 49–70. doi: 10.1016/j.fss.2014.08.008
  • Y.J. Liu and S. Tong, Barrier Lyapunov functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints, Automatica 64 (2016), pp. 70–75. doi: 10.1016/j.automatica.2015.10.034
  • Y.J. Liu, S. Tong, D.J. Li, and Y. Gao, Fuzzy adaptive control with state observer for a class of nonlinear discrete-time systems with input constraint, IEEE Trans. Fuzzy Syst. (2016), doi: 10.1109/TFUZZ.2015.2505088.
  • R. Marino, W. Respondek, and A.J. van der Schaft, Almost disturbance decoupling for single-input single-output nonlinear systems, IEEE Trans. Autom. Control 34 (1989), pp. 1013–1017. doi: 10.1109/9.35821
  • H.B. Sun and L. Guo, Composite adaptive disturbance observer based control and back-stepping method for nonlinear system with multiple mismatched disturbances, J. Frank. Instit. 351 (2014), pp. 1027–1041. doi: 10.1016/j.jfranklin.2013.10.002
  • H.B. Sun and L. Guo, Neural network based DOBC for a class of nonlinear systems with unmatched disturbances, IEEE Trans. Neural Netw. Learn. Syst. (2016), doi: 10.1109/TNNLS.2015.2511450.
  • H.B. Sun and S.H. Li, Composite control method for stabilizing spacecraft attitude in terms of rodrigues parameters, Chinese J. Aeronaut. 26 (2013), pp. 687–696. doi: 10.1016/j.cja.2013.04.032
  • H.B. Sun, S.H. Li, and S.M. Fei, A composite control scheme for 6DOF spacecraft formation control, Acta Astronaut. 69 (2011), pp. 595–611. doi: 10.1016/j.actaastro.2011.04.009
  • H.B. Sun, S.H. Li, and C.Y. Sun, Finite time integral sliding mode control of hypersonic vehicles, Nonlinear Dyn. 73 (2012), pp. 229–244. doi: 10.1007/s11071-013-0780-4
  • X.J. Wei and L. Guo, Composite disturbance-observer-based control and terminal sliding mode control for non-linear systems with disturbances, Int. J. Control 82 (2009), pp. 1082–1098. doi: 10.1080/00207170802455339
  • X.J. Wei and L. Guo, Composite disturbance-observer-based control and H∞ control for complex continuous models, Int. J. Robust Nonlinear Control 20 (2010), pp. 106–118. doi: 10.1002/rnc.1425
  • Y.L. Wei, W.X. Zheng, and S.Y. Xu, Anti-disturbance control for nonlinear systems subject to input saturation via disturbance observer, Syst. Control Lett. 85 (2015), pp. 61–69. doi: 10.1016/j.sysconle.2015.08.006
  • B. Xu, Disturbance observer based dynamic surface control of transport aircraft with continuous heavy cargo airdrop, IEEE Trans. Syst., Man, and Cybern.: Syst. (2016), doi: 10.1109/TSMC.2016.2558098.
  • B. Xu, F.C. Sun, Y.P. Pan, and B.D. Chen, Disturbance observer based composite learning fuzzy control of nonlinear systems with unknown dead zone, IEEE Trans. Syst., Man, and Cybern.: Syst. (2016), doi:10.1109/TSMC.2016.2562502.
  • J. Xu and J. Xu, Observer based learning control for a class of nonlinear systems with time-varying parrametric uncertainties, IEEE Trans. Autom. Control 49 (2004), pp. 273–281.
  • J. Yang, S.H. Li, X.S. Chen, and Q. Li, Disturbance rejection of ball mill grinding circuits using DOB and MPC, Powder Technol. 198 (2010), pp. 219–228. doi: 10.1016/j.powtec.2009.11.010
  • J. Yang, S. Li, C.Y. Sun, and L. Guo, Nonlinear-disturbance-observer-based robust flight control for airbreathing hypersonic vehicles, IEEE Trans. Aerosp. Electron. Syst. 49 (2013), pp. 1263–1275. doi: 10.1109/TAES.2013.6494412
  • J. Yang, S. Li, J. Su, and X. Yu, Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances, Automatica 49 (2013), pp. 2287–2291. doi: 10.1016/j.automatica.2013.03.026
  • J. Yang, W.X. Zheng, S. Li, B. Wu, and M. Cheng, Design of a prediction-accuracy-enhanced continuous-time MPC for disturbed systems via a disturbance observer, IEEE Trans. Ind. Electron. 62 (2015), pp. 5807–5816. doi: 10.1109/TIE.2015.2450736
  • J. Yang, A. Zolotas, W.H. Chen, K. Michail, and S.H. Li, Robust control of nonlinear MAGLEV suspension system with mismatched uncertainties via DOBC approach, ISA Trans. 50 (2011), pp. 389–396. doi: 10.1016/j.isatra.2011.01.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.