224
Views
5
CrossRef citations to date
0
Altmetric
Review

A conservative compact difference scheme for the Zakharov equations in one space dimension

&
Pages 279-302 | Received 25 May 2016, Accepted 03 Jan 2017, Published online: 28 Feb 2017

References

  • W. Bao and F. Sun, Efficient and stable numerical methods for the generalized and vector Zakharov system, SIAM J. Sci. Comput. 26 (2005), pp. 1057–1088. doi: 10.1137/030600941
  • W. Bao, F. Sun, and G.W. Wei, Numerical methods for the generalized Zakharov system, J. Comput. Phys. 190 (2003), pp. 201–228. doi: 10.1016/S0021-9991(03)00271-7
  • A.H. Bhrawy, An efficient Jacobi pseudospectral approximation for nonlinear complex generalized Zakharov system, Appl. Math. Comput. 247 (2014), pp. 30–46.
  • J.L. Bona and P.J. Bryant, A mathematical model for long waves generated by wave makers in nonlinear dispersive systems, Proc. Camb. Philos. Soc. 73 (1973), pp. 391–405. doi: 10.1017/S0305004100076945
  • J. Bourgain and J. Colliander, On wellposedness of the Zakharov system, Int. Math. Res. Notices 11 (1996), pp. 515–546. doi: 10.1155/S1073792896000359
  • T. Chan and L. Shen, Stability analysis of difference schemes for variable coefficient Schrodinger type equations, SIAM J. Numer. Anal. 24 (1981), pp. 336–349. doi: 10.1137/0724025
  • Q. Chang, B. Guo, and H. Jiang, Finite difference method for generalized Zakharov equations, Math. Comput. 64 (1995), pp. 537–553. doi: 10.1090/S0025-5718-1995-1284664-5
  • J. Colliander, Wellposedness for Zakharov systems with generalized nonlinearity, J. Differ. Equ. 148 (1998), pp. 351–363. doi: 10.1006/jdeq.1998.3445
  • Z. Fayong and G. Boling, Attractors for fully discrete finite difference scheme of dissipative Zakharov equations, Acta Math. Sci. 32B (2012), pp. 2431–2452. doi: 10.1016/S0252-9602(12)60190-8
  • R. Glassey, Convergence of an energy-preserving scheme for the Zakharov equations in one space dimension, Math. Comput. 58 (1992), pp. 83–83. doi: 10.1090/S0025-5718-1992-1106968-6
  • B. Guo, P.J. Paseual, M.J. Rodriguez, and L. Vzquez, Numerical solution of the Sine–Gorden equation, Appl. Math. Comput. 18 (1986), pp. 1–14.
  • B. Hu, Y. Xu, and J. Hu, Crank–Nicolson finite difference scheme for the Roseanu–Burgers equation, Appl. Math. Comput. 204 (2008), pp. 311–316.
  • M. Javidi and A. Golbabai, Exact and numerical solitary wave solution of generalized Zakharov equation by the variational iteration method, Chaos Solitons Fractals 36 (2008), pp. 309–313. doi: 10.1016/j.chaos.2006.06.088
  • F. Liao and L. Zhang, Conservative compact finite difference scheme for the coupled Schrodinger–Boussinesq equation, Numer. Methods Partial Differ. Equ. 32 (2016), pp. 1667–1688. doi: 10.1002/num.22067
  • G.L. Payne, D.R. Nicholson, and R.M. Downie, Numerical solution of the Zakharov equations, J. Comput. Phys. 50 (1983), pp. 482–498. doi: 10.1016/0021-9991(83)90107-9
  • C. Sulem and P.L. Sulem, Regularity properties for the equations of Langmuir turbulence, C. R. Acad. Sci. Paris Ser. A Math. 289 (1979), pp. 173–176.
  • Z. Sun and Q. Zhu, On Tsertsvadzes difference scheme for the Kuramoto–Tsuzuki equation, J. Comput. Appl. Math. 98 (1998), pp. 289–304. doi: 10.1016/S0377-0427(98)00135-6
  • W. Tingchun and Z. Xiaofei, Optimal L∞ error estimates of finite difference methods for the coupled Gross–Pitaevskii equations in high dimensions, Sci. China Math. 57 (2014), pp. 2189–2214. doi: 10.1007/s11425-014-4773-7
  • J. Wang, Multi-symplectic numerical method for the Zakharov system, Comput. Phys. Commun. 180 (2009), pp. 1063–1071. doi: 10.1016/j.cpc.2008.12.028
  • T. Wang, Optimal point-wise error estimate of a compact difference scheme for the coupled Gross–Pitaevskii equations in one dimension, J. Sci. Comput. 59 (2014), pp. 158–186. doi: 10.1007/s10915-013-9757-1
  • T. Wang, Optimal point-wise error estimate of a compact difference scheme for the Klein–Gordon–Schrodinger equation, J. Math. Anal. Appl. 412 (2014), pp. 155–167. doi: 10.1016/j.jmaa.2013.10.038
  • T. Wang, Optimal point-wise error estimate of a compact difference scheme for the coupled nonlinear Schrodinger equations, J. Comput. Math. 32(1) (2014), pp. 58–74. doi: 10.4208/jcm.1310-m4340
  • T. Wang, Uniform pointwise error estimates of semi-implicit compact finite difference methods for the nonlinear Schrodinger equation perturbed by wave operator, J. Math. Anal. Appl. 422 (2015), pp. 286–308. doi: 10.1016/j.jmaa.2014.08.026
  • Y. Yan, F. Ira Moxley III, and W. Dai, A new compact finite difference scheme for solving the complex Ginzburg–Landau equation, Appl. Math. Comput. 260 (2015), pp. 268–287.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.