447
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

A second-order finite difference scheme for quasilinear time fractional parabolic equation based on new fractional derivative

, &
Pages 396-411 | Received 02 Feb 2016, Accepted 08 Sep 2016, Published online: 19 Feb 2017

References

  • A. Ashyralyev and Z. Cakir, On the numerical solution of fractional parabolic partial differential equations with the dirichlet condition, Discrete Dyn. Nat. Soc. (2012), article ID 696179. doi: 10.1155/2012/696179
  • A. Ashyralyev and Z. Cakir, Fdm for fractional parabolic equations with the Neumann condition, Adv. Differ. Equ. 2013(1) (2013), pp. 1–16. doi: 10.1186/1687-1847-2013-1
  • A. Atangana, On the stability and convergence of the time-fractional variable order telegraph equation, J. Comput. Phys. 293 (2015), pp. 104–114. doi: 10.1016/j.jcp.2014.12.043
  • A. Atangana, On the new fractional derivative and application to nonlinear fishers reaction–diffusion equation, Appl. Math. Comput. 273 (2016), pp. 948–956.
  • A. Atangana and B.S.T. Alkahtani, Extension of the resistance, inductance, capacitance electrical circuit to fractional derivative without singular kernel, Adv. Mech. Eng. 7(6) (2015). doi: 10.1177/1687814015591937
  • A. Atangana and D. Baleanu, Numerical solution of a kind of fractional parabolic equations via two difference schemes, in Abstract and Applied Analysis, Vol. 2013, Hindawi Publishing Corporation, 2013, article ID 828764. doi: 10.1155/2013/828764.
  • A. Atangana and J.J. Nieto, Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel, Adv. Mech. Eng. 7(10) (2015). doi: 10.1177/1687814015613758
  • H. Brunner, H. Han, and D. Yin, Artificial boundary conditions and finite difference approximations for a time-fractional diffusion-wave equation on a two-dimensional unbounded spatial domain, J. Comput. Phys. 276 (2014), pp. 541–562. doi: 10.1016/j.jcp.2014.07.045
  • M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl. 1(2) (2015), pp. 73–85.
  • J. Chen, F. Liu, and V. Anh, Analytical solution for the time-fractional telegraph equation by the method of separating variables, J. Math. Anal. Appl. 338(2) (2008), pp. 1364–1377. doi: 10.1016/j.jmaa.2007.06.023
  • A. Cheng, H. Wang, and K. Wang, A Eulerian–Lagrangian control volume method for solute transport with anomalous diffusion, Numer. Methods Partial Differ. Equ. 31(1) (2015), pp. 253–267. doi: 10.1002/num.21901
  • S. Das, K. Vishal, P. Gupta, and A. Yildirim, An approximate analytical solution of time-fractional telegraph equation, Appl. Math. Comput. 217(18) (2011), pp. 7405–7411.
  • V.R. Hosseini, E. Shivanian, and W. Chen, Local integration of 2-d fractional telegraph equation via local radial point interpolant approximation, Eur. Phys. J. Plus 130(2) (2015), pp. 1–21. doi: 10.1140/epjp/i2015-15033-5
  • J. Huang, Y. Tang, L. Vázquez, and J. Yang, Two finite difference schemes for time fractional diffusion-wave equation, Numer. Algorithms 64(4) (2013), pp. 707–720. doi: 10.1007/s11075-012-9689-0
  • Y. Jiang and J. Ma, High-order finite element methods for time-fractional partial differential equations, J. Comput. Appl. Math. 235(11) (2011), pp. 3285–3290. doi: 10.1016/j.cam.2011.01.011
  • W. Li and X. Da, Finite central difference/finite element approximations for parabolic integro-differential equations, Computing 90(3–4) (2010), pp. 89–111. doi: 10.1007/s00607-010-0105-0
  • X. Li and H. Rui, Characteristic block-centered finite difference methods for nonlinear convection-dominated diffusion equation, Int. J. Comput. Math. 94(2) (2017), pp. 386–404. doi: 10.1080/00207160.2015.1109641
  • Y. Lin, X. Li, and C. Xu, Finite difference/spectral approximations for the fractional cable equation, Math. Comput. 80(275) (2011), pp. 1369–1396. doi: 10.1090/S0025-5718-2010-02438-X
  • Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys. 225(2) (2007), pp. 1533–1552. doi: 10.1016/j.jcp.2007.02.001
  • Y. Liu, Y. Du, H. Li, S. He, and W. Gao, Finite difference/finite element method for a nonlinear time-fractional fourth-order reaction–diffusion problem, Comput. Math. Appl. 70 (2015), pp. 573–591. doi: 10.1016/j.camwa.2015.05.015
  • Y. Liu, Z. Fang, H. Li, and S. He, A mixed finite element method for a time-fractional fourth-order partial differential equation, Appl. Math. Comput. 243 (2014), pp. 703–717.
  • Y. Liu, H. Li, W. Gao, S. He, and Z. Fang, A new mixed element method for a class of time-fractional partial differential equations, Sci. World J. (2014), article ID 141467. doi: 10.1155/2014/141467.
  • Z. Liu and X. Li, A parallel cgs block-centered finite difference method for a nonlinear time-fractional parabolic equation, Comput. Methods Appl. Mech. Eng. 308 (2016), pp. 330–348. doi: 10.1016/j.cma.2016.05.028
  • Q. Liu, F. Liu, I. Turner, V. Anh, and Y. Gu, A rbf meshless approach for modeling a fractal mobile/immobile transport model, Appl. Math. Comput. 226 (2014), pp. 336–347.
  • F. Liu, P. Zhuang, and K. Burrage, Numerical methods and analysis for a class of fractional advection–dispersion models, Comput. Math. Appl. 64(10) (2012), pp. 2990–3007. doi: 10.1016/j.camwa.2012.01.020
  • F. Liu, P. Zhuang, I. Turner, K. Burrage, and V. Anh, A new fractional finite volume method for solving the fractional diffusion equation, Appl. Math. Model. 38(15) (2014), pp. 3871–3878. doi: 10.1016/j.apm.2013.10.007
  • C.F. Lorenzo and T.T. Hartley, Initialization, conceptualization, and application in the generalized (fractional) calculus, Crit. Rev. Biomed. Eng. 35(6) (2007), pp. 447–553. doi: 10.1615/CritRevBiomedEng.v35.i6.10
  • S.G. Samko and B. Ross, Integration and differentiation to a variable fractional order, Integral Transforms Special Funct. 1(4) (1993), pp. 277–300. doi: 10.1080/10652469308819027
  • R. Schumer, D.A. Benson, M.M. Meerschaert, and B. Baeumer, Fractal mobile/immobile solute transport, Water Resour. Res. 39(10). doi: 10.1029/2003WR002141.
  • E. Sousa, Finite difference approximations for a fractional advection diffusion problem, J. Comput. Phys. 228(11) (2009), pp. 4038–4054. doi: 10.1016/j.jcp.2009.02.011
  • E. Sousa, A second order explicit finite difference method for the fractional advection diffusion equation, Comput. Math. Appl. 64(10) (2012), pp. 3141–3152. doi: 10.1016/j.camwa.2012.03.002
  • E. Sousa, An explicit high order method for fractional advection diffusion equations, J. Comput. Phys. 278 (2014), pp. 257–274. doi: 10.1016/j.jcp.2014.08.036
  • A. Torokhti and P. Howlett, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, Vol. 111, Elsevier, New York, 1974.
  • L. Wei and Y. He, Analysis of a fully discrete local discontinuous galerkin method for time-fractional fourth-order problems, Appl. Math. Model. 38(4) (2014), pp. 1511–1522. doi: 10.1016/j.apm.2013.07.040
  • F. Zeng, C. Li, F. Liu, and I. Turner, The use of finite difference/element approaches for solving the time-fractional subdiffusion equation, SIAM J. Sci. Comput. 35(6) (2013), pp. A2976–A3000. doi: 10.1137/130910865
  • Y. Zhang, D.A. Benson, and D.M. Reeves, Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications, Adv. Water Resour. 32(4) (2009), pp. 561–581. doi: 10.1016/j.advwatres.2009.01.008
  • N. Zhang, W. Deng, and Y. Wu, Finite difference/element method for a two-dimensional modified fractional diffusion equation, Adv. Appl. Math. Mech. 4 (2012), pp. 496–518. doi: 10.4208/aamm.10-m1210
  • H. Zhang, F. Liu, M.S. Phanikumar, and M.M. Meerschaert, A novel numerical method for the time variable fractional order mobile–immobile advection–dispersion model, Comput. Math. Appl. 66(5) (2013), pp. 693–701. doi: 10.1016/j.camwa.2013.01.031
  • X. Zhao, Z.-z. Sun, and G.E. Karniadakis, Second-order approximations for variable order fractional derivatives: Algorithms and applications, J. Comput. Phys. 293 (2015), pp. 184–200. doi: 10.1016/j.jcp.2014.08.015

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.