242
Views
4
CrossRef citations to date
0
Altmetric
Review

Generalized newton multi-step iterative methods GMNp,m for solving system of nonlinear equations

, , , , , , , & show all
Pages 881-897 | Received 18 May 2016, Accepted 01 Mar 2017, Published online: 29 Mar 2017

References

  • F. Ahmad, E. Tohidi, and J.A. Carrasco, A parameterized multi-step Newton method for solving systems of nonlinear equations, Numer. Algorithms 71 (2015), pp. 1017–1398.
  • F. Ahmad, E Tohidi, M.Z. Ullah, and J.A. Carrasco, Higher order multi-step Jarratt-like method for solving systems of nonlinear equations: Application to PDEs and ODEs, Comput. Math. Appl. 70 (2015), pp. 624–636. doi: 10.1016/j.camwa.2015.05.012
  • F. Ahmad and M.Z. Ullah, Eighth-order derivative-free family of iterative methods for nonlinear equations, J. Mod. Methods Numer. Math. 4 (2013), pp. 26–33. doi: 10.20454/jmmnm.2013.598
  • E.S. Alaidarous, M.Z. Ullah, F. Ahmad, and A.S. Al-Fhaid, An efficient higher-order quasilinearization method for solving nonlinear BVPs, J. Appl. Math. 2013 (2013), p. 1–11. doi: 10.1155/2013/259371
  • A.H. Bhrawy, An efficient Jacobi pseudospectral approximation for nonlinear complex generalized Zakharov system, Appl. Math. Comput. 247 (2014), pp. 30–46.
  • W. Bi, H. Ren, and Q. Wu, Three-step iterative methods with eighth-order convergence for solving nonlinear equations, J. Comput. Appl. Math. 225 (2009), pp. 105–112. doi: 10.1016/j.cam.2008.07.004
  • W. Bi, Q. Wu, and H. Ren, A new family of eighth-order iterative methods for solving nonlinear equations, Appl. Math. Comput. 214 (2009), pp. 236–245.
  • D. Budzko, A. Cordero, and J.R. Torregrosa, Modifications of Newtons method to extend the convergence domain, SeMA J. 66 (2014), pp. 43–53. doi: 10.1007/s40324-014-0020-y
  • A. Cordero, J.L. Hueso, E. Martinez, and J.R. Torregrosa, A modified Newton-Jarratts composition, Numer. Algorithms 55 (2010), pp. 87–99. doi: 10.1007/s11075-009-9359-z
  • A. Cordero and J.R. Torregrosa, Variants of Newtons method using fifth-order quadrature formulas, Appl. Math. Comput. 190 (2007), pp. 686–698.
  • M. Davies and B. Dawson, On the global convergence of Halleys iteration formula, Numer. Math. 24 (1975), pp. 133–135. doi: 10.1007/BF01400962
  • M. Dehghan and F.F. Izadi, The spectral collocation method with three different bases for solving a nonlinear partial differential equation arising in modeling of nonlinear waves, Math. Comput. Model. 5 (2011), pp. 1865–1877. doi: 10.1016/j.mcm.2011.01.011
  • E.H. Doha, An accurate double Chebyshev spectral approximation for Poissons equation, Ann. Univ. Sci. Budapest. Sect. Comput. 10 (1990), pp. 243–276.
  • E.H. Doha, A.H. Bhrawy, and S.S. Ezz-Eldien, Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations, Appl. Math. Comput. 35 (2011), pp. 5662–5672.
  • Y.H. Geum and Y.I. Kim, A multi-parameter family of three-step eighth-order iterative methods locating a simple root, Appl. Math. Comput. 215 (2010), pp. 3375–3382.
  • D. Gottlieb and S.A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications, SIAM, Philadelphia, PA, 1977.
  • J.M. Gutierrez and M.A. Hernandez, A family of Chebyshev-Halley type methods in Banach spaces, Bull. Austral. Math. Soc. 55 (1997), pp. 113–130. doi: 10.1017/S0004972700030586
  • E. Halley, A new exact and easy method of finding the roots of equations generally and without any previous reduction, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 18 (1694), pp. 136–148. doi: 10.1098/rstl.1694.0029
  • W. Heinrichs, Spectral methods with sparse matrices, Numer. Math. 56 (1989), pp. 25–41. doi: 10.1007/BF01395776
  • W. Heinrichs, Algebraic spectral multigrid methods, Comput. Methods Appl. Mech. Eng. 80 (1990), pp. 281–286. doi: 10.1016/0045-7825(90)90031-G
  • H.H. Homeier, A modified Newton method with cubic convergence: The multivariable case, J. Comput. Appl. Math. 169 (2004), pp. 161–169. doi: 10.1016/j.cam.2003.12.041
  • P. Jarratt, Some fourth order multipoint iterative methods for solving equations, Math. Comput. 20 (1996), pp. 434–437. doi: 10.1090/S0025-5718-66-99924-8
  • C.T. Kelley, Solving Nonlinear Equations with Newtons Method, SIAM, Philadelphia, 2003.
  • L. Liu and X. Wang, Eighth-order methods with high efficiency index for solving nonlinear equations, Appl. Math. Comput. 215 (2010), pp. 3449–3454.
  • G.S. Miquel, G. Angela, and N. Miquel, Frozen divided difference scheme for solving systems of nonlinear equations, Appl. Math. Comput. 6 (2011), pp. 1739–1743.
  • H. Montazeri, F. Soleymani, S. Shateyi, and S.S. Motsa, On a new method for computing the numerical solution of systems of nonlinear equations, J. Appl. Math. 2012 (2012), pp. 15. doi: 10.1155/2012/751975
  • J.M. Ortega and W.C. Rheinbodt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press Limited 24-28 Oval road, London NW1 7DX, UK, 1970.
  • A.M. Ostrowski, Solution of Equations and Systems of Equations, Academic Press, New york, 1966.
  • M.S. Petkovic, On a general class of multipoint root-finding methods of high computational efficiency, SIAM. J. Numer. Anal. 47 (2011), pp. 1317–1319. doi: 10.1137/100805340
  • M.G. Sanchez, A. Grau, and M. Noguera, Ostrowski type methods for solving systems of nonlinear equations, Appl. Math. Comput. 218 (2011), pp. 2377–2385.
  • A. Sergio, B. Sonia, G. Angela, and G.S. Miquel, Maximum efficiency for a family of Newton-like methods with frozen derivatives and some applications, Appl. Math. Comput. 15 (2013), pp. 7954–7963.
  • J.R. Sharma, R.K. Guha, and R. Sharma, An efficient fourth order weighted-Newton method for systems of nonlinear equations, Numer. Algorithms 62 (2013), pp. 307–323. doi: 10.1007/s11075-012-9585-7
  • J.R. Sharma and H. Arora, Efficient Jarratt-like methods for solving systems of nonlinear equations, Calcolo 51 (2014), pp. 193–210. doi: 10.1007/s10092-013-0097-1
  • F. Soleymani, On a new class of optimal eighth-order derivative-free methods, Acta Universitatis Sapientiae Mathematica 3 (2011), pp. 169–180.
  • F. Soleymani, T. Lotfi, and P. Bakhtiari, A multi-step class of iterative methods for nonlinear systems, Optim. Lett. 8 (2014), pp. 1001–1015. doi: 10.1007/s11590-013-0617-6
  • E. Tohidi and S. Lotfi Noghabi, An efficient Legendre pseudospectral method for solving nonlinear quasi bang-bang optimal control problems, J. Appl. Math. Stat. Inf. 8 (2012), pp. 73–85.
  • J.F. Traub, Iterative Methods for the Solution of Equations, Prentice-Hall, Englewood Cliffs, 1964.
  • M.Z. Ullah, A.S. Al-Fhaid, and F. Ahmad, Four-point optimal sixteenth-order iterative, method for solving nonlinear equations, J. Appl. Math. 2013 (2013), p. 1–5.
  • M.Z. Ullah, S. Serra-Capizzano, and F. Ahmad, An efficient multi-step iterative method for computing the numerical solution of systems of nonlinear equations associated with ODEs, Appl. Math. Comput. 250 (2015), pp. 249–259.
  • M.Z. Ullah, F. Soleymani, and A.S. Al-Fhaid, Numerical solution of nonlinear systems by a general class of iterative methods with application to nonlinear PDEs, Numer. Algorithms 67 (2014), pp. 223–242. doi: 10.1007/s11075-013-9784-x
  • X. Wang and L. Liu, Modified Ostrowski's method with eighth-order convergence and high efficiency index, Appl. Math. Lett. 23 (2010), pp. 549–554. doi: 10.1016/j.aml.2010.01.009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.