92
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Numerical study of the Navier–Stokes-α deconvolution model with pointwise mass conservation

&
Pages 1727-1760 | Received 09 Nov 2016, Accepted 09 Apr 2017, Published online: 05 Jun 2017

References

  • N.A. Adams and S. Stolz, An approximate deconvolution procedure for large-eddy simulation, Phys. Fluids 11 (1999), pp. 1699–1701. doi: 10.1063/1.869867
  • M. Alnæs, A. Logg, K. Ølgaard, M. Rognes, and G. Wells, Unified form language: A domain-specific language for weak formulations of partial differential equations, ACM Trans. Math. Softw. 40(2) (2014).
  • M. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. Rognes, and G. Wells, The FEniCS project version 1.5, Archive Numer. Softw. 3(100) (2015).
  • D. Barbato, L.C. Berselli, and C.R. Grisanti, Analytical and numerical results for the rational large eddy simulation model, J. Math. Fluid Mech. 9(1) (2007), pp. 44–74. doi: 10.1007/s00021-006-0191-0
  • L Berselli, On the large eddy simulation of the taylor–green vortex, J. Math. Phys. 7(2) (2005), pp. S164–S191.
  • L.C. Berselli, T. Iliescu, and W. Layton, Mathematics of Large Eddy Simulation of Turbulent Flows, Springer-Verlag, Berlin, 2006.
  • S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, Springer, New York, 1994.
  • F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer, Berlin, 1991.
  • S. Chen, C. Foias, D.D. Holm, E. Olson, E.S. Titi, and S. Wynne, Camassa-Holm equations as a closure model for turbulent channel and pipe flow, Phys. Rev. Lett. 81(24) (1998), pp. 5338–5341. doi: 10.1103/PhysRevLett.81.5338
  • J. Connors, Convergence analysis and computational testing of the finite element discretization of the Navier–Stokes-alpha model, Numer. Methods. Partial. Differ. Equ. 26(6) (2010), pp. 1328–1350.
  • A. Dunca and Y. Epshteyn, On the Stolz–Adams deconvolution model for the large-eddy simulation of turbulent flows, SIAM J. Math. Anal. 37(6) (2006), pp. 1890–1902. doi: 10.1137/S0036141003436302
  • C. Foias, D.D. Holm, and E.S. Titi, The Navier–Stokes-alpha model of fluid turbulence, Physica D: Nonlinear Phenomena 152–153 (2001), pp. 505–519. doi: 10.1016/S0167-2789(01)00191-9
  • E. Fried and M.E. Gurtin, A continuum mechanical framework for turbulence giving a generalized Navier–Stokes-α equation with complete boundary conditions, Theoret. Comput. Fluid Dyn. 22 (2007), pp. 433–470. doi: 10.1007/s00162-008-0083-4
  • E. Fried and M.E. Gurtin, Turbulent kinetic energy and a possible hierarchy of length scales in a generalization of the Navier–Stokes-α theory, Phys. Rev. E – Statist, Nonlinear, Soft Matter Phys. 75 (2007), pp. 1–10. doi: 10.1103/PhysRevE.75.056306
  • M. Germano, Differential filters for the large eddy numerical simulation of turbulent flows, Phys. Fluids 29(6) (1986), pp. 1755–1757. doi: 10.1063/1.865649
  • J.L. Guermond, J.T. Oden, and S. Prudhomme, An interpretation of the Navier–Stokes-alpha model as a frame-indifferent Leray regularization, Phys. D: Nonlinear Phenom. 177(1–4) (2003), pp. 23–30. doi: 10.1016/S0167-2789(02)00748-0
  • M. Gunzburger, Penalty methods, in Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms, Academic Press, INC, Boston, 1989.
  • T.-Y. Kim, M. Neda, L.G. Rebholz, and E. Fried, A numerical study of the Navier–Stokes-αβ model, Comput. Methods. Appl. Mech. Eng. 200(41–44) (2011), pp. 2891–2902. doi: 10.1016/j.cma.2011.05.011
  • T. Kim, L. Rebholz, and E. Fried, A deconvolution enhancement of the Navier-Stokes-αβ model, J. Comput. Phys. 231 (2012), pp. 4015–4027. doi: 10.1016/j.jcp.2011.12.003
  • A.N. Kolmogorov, The local structure of turbulence in incompressible viscous fluids for very large Reynolds numbers, Doklady Akademii Nauk SSR 30 (1941), pp. 9–13.
  • W. Layton, Introduction to the Numerical Analysis of Incompressible Viscous Flows, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2008.
  • W. Layton, C.C. Manica, M. Neda, and L.G. Rebholz, Numerical analysis and computational testing of a high accuracy Leray-deconvolution model of turbulence, Numer. Methods. Partial. Differ. Equ. 24(2) (2008), pp. 555–582. doi: 10.1002/num.20281
  • W. Layton, C.C. Manica, M. Neda, M. Olshanskii, and L. Rebholz, On the accuracy of the rotation form in simulations of the Navier–Stokes equations, J. Comput. Phys. 228(9) (2009), pp. 3433–3447. doi: 10.1016/j.jcp.2009.01.027
  • W. Layton, C.C. Manica, M. Neda, and L.G. Rebholz, Numerical analysis and computational comparisons of the NS-alpha and NS-omega regularizations, Comput. Methods. Appl. Mech. Eng. 199(13–16) (2010), pp. 916–931. doi: 10.1016/j.cma.2009.01.011
  • W. Layton, L. Rebholz, and M. Sussman, Energy and helicity dissipation rates of the NS-alpha and NS-alpha-deconvolution models, IMA J. Appl. Math. 75(1) (2010), pp. 56–74. doi: 10.1093/imamat/hxp034
  • M. Lesiuer, O. Metais, and P. Comte, Large-eddy Simulations of Turbulence, Cambridge University Press, New York, 2005.
  • A. Logg, K. Mardal, and G. Wells, Automated Solution of Differential Equations by the Finite Element Method, Springer, Berlin, 2012.
  • E. Lunasin, S. Kurien, M.A. Taylor, and E.S. Titi, A study of the Navier–Stokes-alpha model for two-dimensional turbulence, J. Turbul. 8 (2007). doi: 10.1080/14685240701439403
  • C.C. Manica, M. Neda, M. Olshanskii, and L. Rebholz, Enabling numerical accuracy of Navier–Stokes-α through deconvolution and enhanced stability, ESAIM: Math. Model. Numer. Anal. 45(2) (2010), pp. 277–307. doi: 10.1051/m2an/2010042
  • C.C. Manica, M. Neda, M. Olshanksii, L. Rebholz, and N. Wilson, On an efficient finite element method for Navier–Stokes-omega with strong mass conservation, Comput. Methods Appl. Math. 11 (2011), pp. 3–22. doi: 10.2478/cmam-2011-0001
  • J. Qin, On the convergence of some low order mixed finite elements for incompressible fluids, PhD thesis, The Pennsylvania State University, 1994.
  • L.G. Rebholz, A family of new, high order NS-alpha models arising from helicity correction in Leray turbulence models, J. Math. Anal. Appl. 342(1) (2008), pp. 246–254. doi: 10.1016/j.jmaa.2007.11.031
  • L. Rebholz and W. Miles, An enhanced-physics-based scheme for the NS-alpha turbulence model, Numer. Methods. Partial. Differ. Equ. 26(6) (2009), pp. 1530–1555.
  • L.R. Scott and M. Vogelius, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials, RAIRO – Modélisation mathématique et analyse numérique 19(1) (1985), pp. 111–143.
  • L.R. Scott and M. Vogelius, Conforming finite element methods for incompressible and nearly incompressible continua, Lect. Appl. Math. 22 (1985), pp. 221–244.
  • G.I. Taylor and A.E. Green, Mechanism of the production of small eddies from large ones, Proc. R. Soc. Lond. A. Math. Phys. Sci. 158(895) (1937), pp. 499–521. doi: 10.1098/rspa.1937.0036
  • C. Taylor and P. Hood, A numerical solution of the NSE using the finite element technique, Int. J. Comput. Fluids 1 (1973), pp. 73–100. doi: 10.1016/0045-7930(73)90027-3
  • M. Vogelius, An analysis of the p-version of the finite element method for nearly incompressible materials, uniformly valid, optimal error estimates, Numer. Math. 41 (1983), pp. 39–53. doi: 10.1007/BF01396304
  • M. Vogelius, A right-inverse for the divergence operator in spaces of piecewise polynomials. Application to the p-version of the finite element method, Numer. Math. 41 (1983), pp. 19–37. doi: 10.1007/BF01396303
  • J. Volker, Reference values for drag and lift of a two-dimensional time-dependent flow around a cylinder, Int. J. Numer. Methods. Fluids. 44 (2004), pp. 777–788. doi: 10.1002/fld.679
  • J. Volker and A. Liakos, Time dependent flow across a step: The slip with friction boundary condition, Int. J. Numer. Methods. Fluids. 50(6) (2006), pp. 713–731. doi: 10.1002/fld.1074
  • E. Zeidler, Nonlinear Functional Analysis and its Applications: I Fixed Point Theorems, Springer, New York, 1986.
  • S. Zhang, Quadratic divergence-free finite elements on Powell–Sabin tetrahedral grids, Calcolo 48 (2011), pp. 211–244. doi: 10.1007/s10092-010-0035-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.