185
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Local discontinuous Galerkin methods based on the multisymplectic formulation for two kinds of Hamiltonian PDEs

ORCID Icon, , &
Pages 114-143 | Received 12 Feb 2017, Accepted 21 Apr 2017, Published online: 11 Jun 2017

References

  • U.M. Ascher and R.I. McLachlan, On symplectic and multisymplectic schemes for the KdV equation, J. Sci. Comput. 25 (2005), pp. 83–104. doi: 10.1007/s10915-004-4634-6
  • J.L. Bona, H. Chen, O. Karakashian, and Y. Xing, Conservative, discontinuous-Galerkin methods for the generalized Korteweg–de Vries equation, Math. Comput. 82 (2013), pp. 1401–1432. doi: 10.1090/S0025-5718-2013-02661-0
  • T.J. Bridges and S. Reich, Multi-symplectic integrators: Numerical schemes for Hamiltonian PDEs that conserve symplecticity, Phys. Lett. A 284 (2001), pp. 184–193. doi: 10.1016/S0375-9601(01)00294-8
  • T.J. Bridges and S. Reich, Multi-symplectic spectral discretizations for the Zakharov–Kuznetsov and shallow water equations, Phys. D 152–153 (2001), pp. 491–504. doi: 10.1016/S0167-2789(01)00188-9
  • T.J. Bridges and S. Reich, Numerical methods for Hamiltonian PDEs, J. Phys. A: Math. Gen. 39 (2006), pp. 5287–5320. doi: 10.1088/0305-4470/39/19/S02
  • J. Cai, Y. Wang, and Z. Qiao, Multisymplectic Preissman scheme for the time-domain Maxwell's equations, J. Math. Phys. 50 (2009). doi: 10.1063/1.3087421
  • W. Cai, Y. Sun, and Y. Wang, Variational discretizations for the generalized Rosenau-type, Appl. Math. Comput. 271 (2015), pp. 860–873.
  • J. Chen and M. Qin, Multi-symplectic Fourier pseudospectral method for the nonlinear Schrödinger equation, Electon. Trans. Numer. Anal. 12 (2001), pp. 193–204.
  • P. Ciarlet, The Finite Element Method for Elliptic Problems, SIAM, Philadelphia, 2002.
  • B. Cockburn and C.-W. Shu, TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework, Math. Comput. 52 (1989), pp. 411–435.
  • B. Cockburn and C.-W. Shu, The Runge–Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems, J. Comput. Phys. 141 (1998), pp. 199–224. doi: 10.1006/jcph.1998.5892
  • B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection–diffusion systems, SIAM J. Numer. Anal. 35 (1998), pp. 2440–2463. doi: 10.1137/S0036142997316712
  • B. Cockburn, S.-Y. Lin, and C.-W. Shu, TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One dimensional systems, J. Comput. Phys 84 (1989), pp. 90–113. doi: 10.1016/0021-9991(89)90183-6
  • B. Cockburn, S. Hou, and C.-W. Shu, The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case, Math. Comput. 54 (1990), pp. 548–581.
  • D. Cohen, B. Owren, and X. Raynaud, Multi-symplectic integration of the Camassa–Holm equation, J. Comput. Phys. 227 (2008), pp. 5492–5512. doi: 10.1016/j.jcp.2008.01.051
  • J. Frank, B.E. Moore, and S. Reich, Linear PDEs and numerical methods that preserve a multisymplectic conservation law, SIAM J. Sci. Comput. 28 (2006), pp. 260–277. doi: 10.1137/050628271
  • Y. Gong, J. Cai, and Y. Wang, Some new structure-preserving algorithms for general multi-symplectic formulations of Hamiltonian PDEs, J. Comput. Phys. 279 (2014), pp. 80–102. doi: 10.1016/j.jcp.2014.09.001
  • E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd ed., Springer, Berlin, 2006.
  • J. Hong, H. Liu, and G. Sun, The multi-symplecticity of partitioned Runge–Kutta methods for Hamiltonian PDEs, Math. Comput. 75 (2005), pp. 167–182. doi: 10.1090/S0025-5718-05-01793-X
  • A.L. Islas, D.A. Karpeev, and C.M. Schober, Geometric integrators for the nonlinear Schrödinger equation, J. Comput. Phys. 173 (2001), pp. 116–148. doi: 10.1006/jcph.2001.6854
  • L. Kong, J. Hong, and J. Zhang, Splitting multisymplectic integrators for Maxwell's equations, J. Comput. Phys. 229 (2010), pp. 4259–4278. doi: 10.1016/j.jcp.2010.02.010
  • H. Liu and Y. Xing, An invariant preserving discontinuous Galerkin method for the Camassa–Holm equation, SIAM J. Sci. Comput. 38 (2016), pp. A1919–A1934. doi: 10.1137/15M102705X
  • H. Liu and N. Yi, A Hamiltonian preserving discontinuous Galerkin method for the generalized Korteweg–de Vries equation, J. Comput. Phys. 321 (2016), pp. 776–796. doi: 10.1016/j.jcp.2016.06.010
  • J.E. Marsden, G.P. Patrick, and S. Shkoller, Multisymplectic geometry, variational integrators, and nonlinear PDEs, Commun. Math. Phys. 199 (1998), pp. 351–395. doi: 10.1007/s002200050505
  • W.H. Reed and T.R. Hill, Triangular mesh methods for the neutron transport equation, Technical Report Tech. report LA-UR-73-479, Los Alamos Scientic Laboratory, 1973.
  • S. Reich, Multi-symplectic Runge–Kutta collocation methods for Hamiltonian wave equations, J. Comput. Phys 157 (1999), pp. 473–499. doi: 10.1006/jcph.1999.6372
  • J.-Q. Sun and M.-Z. Qin, Multi-symplectic methods for the coupled 1D nonlinear Schrödinger system, Comput. Phys. Commun. 155 (2003), pp. 221–235. doi: 10.1016/S0010-4655(03)00285-6
  • Y. Sun and P.S.P. Tse, Symplectic and multisymplectic numerical methods for Maxwell's equations, J. Comput. Phys. 230 (2011), pp. 2076–2094. doi: 10.1016/j.jcp.2010.12.006
  • W. Tang, Y. Sun, and W. Cai, Discontinuous Galerkin methods for Hamiltonian ODEs and PDEs, J. Comput. Phys. 330 (2017), pp. 340–364. doi: 10.1016/j.jcp.2016.11.023
  • M.M. Vainberg, Variational Methods for the Study of Nonlinear Operators, Holden-Day, San Francisco, CA, 1964. Translated by A. Feinstein.
  • Y. Wang, B. Wang, and M. Qin, Numerical implementation of the multisymplectic Preissman scheme and its equivalent schemes, Appl. Math. Comput. 149 (2004), pp. 299–326.
  • Y. Xia and Y. Xu, A conservative local discontinuous Galerkin method for the Schrödinger–KdV system, Commun. Comput. Phys. 15 (2014), pp. 1091–1107. doi: 10.4208/cicp.140313.160813s
  • Y. Xu and C.-W. Shu, Local discontinuous Galerkin methods for nonlinear Schrödinger equations, J. Comput. Phys. 205 (2005), pp. 72–97. doi: 10.1016/j.jcp.2004.11.001
  • Y. Xu and C.-W. Shu, Local discontinuous Galerkin methods for high-order time dependent partial differential equations, Commun. Comput. Phys. 7 (2010), pp. 1–46.
  • J. Yan and C.-W. Shu, A local discontinuous Galerkin method for KdV type equations, SIAM J. Numer. Anal. 40 (2002), pp. 769–791. doi: 10.1137/S0036142901390378
  • N. Yi, Y. Huang, and H. Liu, A direct discontinuous Galerkin method for the generalized Korteweg'de Vries equation: Energy conservation and boundary effect, Commun. Comput. Phys. 242 (2013), pp. 351–366. doi: 10.1016/j.jcp.2013.01.031
  • N.J. Zabusky and M.D. Kruskal, Interaction of “solitons” in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett. 15 (1965), pp. 240–243. doi: 10.1103/PhysRevLett.15.240
  • P.F. Zhao and M.Z. Qin, Multisymplectic geometry and multisymplectic Preissmann scheme for the KdV equation, J. Phys. A – Math. Gen. 33 (2000), pp. 3613–3626. doi: 10.1088/0305-4470/33/18/308
  • H. Zhu, L. Tang, S. Song, Y. Tang, and D. Wang, Symplectic wavelet collocation method for Hamiltonian wave equations, J. Comput. Phys. 229 (2010), pp. 2550–2572. doi: 10.1016/j.jcp.2009.11.042
  • H. Zhu, S. Song, and Y. Tang, Multi-symplectic wavelet collocation method for the nonlinear Schrödinger equation and the Camassa–Holm equation, Comput. Phys. Commun. 182 (2012), pp. 616–627. doi: 10.1016/j.cpc.2010.11.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.