243
Views
27
CrossRef citations to date
0
Altmetric
Original Articles

Bifurcation analysis of an e-epidemic model in wireless sensor network

&
Pages 1775-1805 | Received 17 Jan 2017, Accepted 09 Apr 2017, Published online: 13 Jun 2017

References

  • I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, A survey on sensor networks, IEEE Commun. Mag. 40(8) (2002), pp. 102–114. doi: 10.1109/MCOM.2002.1024422
  • A. Asudeh, G.V. Zaruba, and S.K. Das, A general model for MAC protocol selection in wireless sensor networks, Ad Hoc. Netw. 36 (2016), pp. 189–202. doi: 10.1016/j.adhoc.2015.07.005
  • Available at http://www.f-secure.com/v-descs/cabir.shtml.
  • J. Carr, Applications of Center Manifold Theory, Springer-Verlag, New York, 1991.
  • C.-M. Chao, Y.-Z. Wang, and M.-W. Lu, Multiple-rendezvous multichannel MAC protocol design for underwater sensor networks, IEEE Trans. Syst. Man Cybern. Syst. 43(1) (2013), pp. 128–138. doi: 10.1109/TSMCA.2012.2192105
  • A. Chatterjee and M. Pandey, Practical applications of WSN based on military, environmental, health and home applications: A survey, Int. J. Sci. Engg. Res. 5(1) (2014), pp. 1043–1050.
  • P. De, Y. Liu, and S.K. Das, Modeling node compromise spreading for evaluating broadcast protocols in wireless sensor networks using epidemic theory, Proceedings of IEEE WoWMom., Niagra-Falls, NY, 2006.
  • P. De, Y. Liu, and S.K. Das, An epidemic theoretic framework for vulnerability analysis of broadcast protocols in wireless sensor networks, IEEE Trans. Mob. Comput. 8(3) (2009), pp. 413–425. doi: 10.1109/TMC.2008.115
  • B.D. Deka, A. Patra, J. Tushar, and B. Dubey, Stability and Hopf-bifurcation in a general Gauss type two-prey and one-predator system, Appl. Math. Model. 40 (2016), pp. 5793–5818. doi: 10.1016/j.apm.2016.01.018
  • K. De Zoysa, C. Keppitiyagama, G.P. Seneviratne, and W.W. Shihan, A public transport system based sensor network or road surface condition monitoring, Proceedings of 2007 workshop on Networked systems for Dev. regions (Kyoto, Japan) NSDR'07, ACM NY, 2007, pp. 1–6.
  • T. Dong, X. Liao, and H. Li, Stability and Hopf bifurcation in a computer virus model with multistate antivirus, Abstr. Appl. Anal. 2012 (2012), pp. 1–16.
  • L. Feng, X. Liao, H. Li, and Q. Han, Hopf bifurcation analysis of a delayed viral infection model in computer networks, Math. Comput. Modelling 56(7) (2012), pp. 167–179. doi: 10.1016/j.mcm.2011.12.010
  • L. Feng, L. Song, Q. Zhao, and H. Wang, Modeling and stability analysis of worm propagation in wireless sensor network, Math. Probl. Eng. 2015 (2015), pp. 129598.
  • S.P.S. Gill, N.K. Suryadevara, and S.C. Mukhopadhyay, Smart power monitoring system using wireless sensor networks, Sixth Int. Conf. on IEEE Sensing Technology (ICST), 2012, pp. 444–449.
  • B. Greenstein, A. Pesterev, C. Mar, E. Kohler, J.W. Judy, S. Farshchi, and D. Estrain, Collecting high-rate data over low-rate sensor network radios, University of California, Los Angeles Center for embedded network sensing technical report, 2007, pp. 1–14.
  • J.K. Hale, Ordinary Differential Equations, John Wiley and Sons, New York, 1969.
  • M. Haque and J. Chattopadhyay, Role of transmissible disease in an infected prey-dependent predator-prey system, Math. Comput. Model. Dyn. Syst. 13 (2007), pp. 163–178. doi: 10.1080/13873950600682580
  • B.D. Hassard, N.D. Kazarinoff, and Y.H. Wan, Theory and Applications of Hopf-Bifurcation, Cambridge University Press, Cambridge, 1981.
  • H.W. Hethcote, An immunization model for a heterogeneous population, Theor. Popul. Biol. 14 (1978), pp. 338–349. doi: 10.1016/0040-5809(78)90011-4
  • P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and D. Rubenstein, Energy-efficient computing for wild-life tracking: Design trade offs and early experiences with zebranet, ASPLOS, SanJose, CA, 2002.
  • R. Jurdak, A.G. Ruzzelli, and G.M.P. O'Hare, Radio sleep mode optimization in wireless sensor networks, IEEE transactions on mobile computing. 9(7) (2010), pp. 955–968. doi: 10.1109/TMC.2010.35
  • R Kannan, M. Divya, M. Kaimal, and M.V. Ramesh, Efficient patient monitoring for multiple patients, IEEE Int. Conf. Adv. Mobile Network, Comm. Appl., 2012, pp. 87–90.
  • H. Kim and H. Cha, Towards a resilient operating system for wireless sensor networks, itUSENIX Annual Tech. Conf., Boston, MA, 2006, pp. 103–108.
  • Y.A. Kuznetsov, Elements of Applied Bifurcation Theory, 2nd ed., Springer-Verlag, New York, 1998.
  • N. Leavitt, Mobile phones: The next frontier for hackers? IEEE Comput. 38(4) (2005), pp. 20–23. doi: 10.1109/MC.2005.134
  • M. Mafuta, M. Zennaro, A. Bagula, G. Ault, H. Gombachika, and T. Chadza, Successful development of a wireless sensor network for precision agriculture in Malawi, Int. J. Distrib. Sens. Netw. 2012 (2013), pp. 1–13.
  • B.K. Mishra and N. Keshri, Mathematical model on the transmission of worms in wireless sensor network, Appl. Math. Model. 37 (2013), pp. 4103–4111. doi: 10.1016/j.apm.2012.09.025
  • B.K. Mishra and N. Keshri, Stability analysis of a predator-prey model in wireless sensor network, Int. J. Comput. Math. 9(15) (2014), pp. 928–943. doi: 10.1080/00207160.2013.809070
  • A.B.H. Mohamed, T. Val, L. Andrieux, and A. Kachouri, Using a kinect WSN for home monitor-ing: Principle, network and application evaluation, Wireless Comm. in Unusual and Confined areas, Int. Conf. IEEE, 2012, pp. 1–5.
  • Y. Moreno, M. Nekovee, and A. Vespignani, Efficiency and reliability of epidemic data dissemination in complex networks, Phys. Rev. E 69 (2004), pp. 1–4.
  • M.E.J. Newman, Spread of epidemic disease on networks, Phys. Rev. E 66 (2002), pp. 1–11.
  • R. Pastor-Satorras and A. Vespignani, Epidemic spreading in scale-free networks, Phys. Rev. Lett. 86 (2001), pp. 3200–3203. doi: 10.1103/PhysRevLett.86.3200
  • R. Rathna and A. Sivasubramanian, Improving energy efficiency in wireless sensor networks through scheduling and routing, IJASSN 2(1) (2012), pp. 21–27. doi: 10.5121/ijassn.2012.2103
  • M. Sandri, Numerical calculation of lyapunov exponents, Math. J. 6 (1996), pp. 78–94.
  • B. Snajder, V. Jelicic, Z. Kalafatic, and V. Bilas, Wireless sensor node modelling for energy efficiency analysis in data-intensive periodic monitoring, Ad Hoc Netw. 49 (2016), pp. 29–41. doi: 10.1016/j.adhoc.2016.06.004
  • J. Sotomayor, Generic bifurcations of dynamical systems, Dyn. Syst. (1973), pp. 561–582.
  • SquidBee, Squidbee: Open sensor mote, 2008. Available at http://www.libelium.com.
  • B. Sun, G. Yan, and Y. Xiao, Worm propagation dynamics in wireless sensor networks, IEEE International Conference on Communications, 2008, pp. 1541–1545.
  • P. Szor, The Art of Computer Virus Research and Defense, Symantec Press, New Jersey, 2005.
  • R.K. Upadhyay and S.R. Iyengar, Introduction to Mathematical Modeling and Chaotic Dynamics, CRC Press, Boca Raton, NY, 2013.
  • S. Wang, Q. Liu, X. Yu, and Yi. Ma, Bifurcation analysis of a model for network worm propagation with time delay, Math. Comput. Model. 52 (2010), pp. 435–447. doi: 10.1016/j.mcm.2010.02.044
  • L. Yiping, Z. Xiznwn, and J. Zhujun, Dynamical behaviors for a three-dimensional differential equation in chemical system, Acta Math. Appl. Sin. 12 (1996), pp. 144–154. doi: 10.1007/BF02007734
  • Yu Yao and X-Wu Xie, Hopf bifurcation in an internet worm propagation model with time delay in quarantine, Math. Comput. Modelling 57 (2013), pp. 2635–2646. doi: 10.1016/j.mcm.2011.06.044
  • M. Zennaro, B. Pehrson, and A. Bagula, Wireless sensor network: A great opportunity for researcher in developing countries, Proceedings of WCITD2008 Conf., Pretoria, South Africa, 2008, pp. 1–8.
  • T. Zhang, Q. Li, and F. Ma, Remote control system of smart appliances based on wireless sensor network, 25th Chinese Control and Decision Conference, IEEE, 2013, pp. 3704–3709.
  • H. Zheng, D. Li, and Z. Gao, An epidemic model of mobile phone virus, First Int. Symp. Pervasive Comput. Appl., 2006, pp. 1–5.
  • Han Zhi-gang and Cui Cai-hui, The application of zigbee based wireless sensor network and GIS in the air pollution monitoring, IEEE Int. Conf. Environ. Sci. Inf. Appl. Technol. 00 (2009), pp. 546–549.
  • Z. Zhang and Y. Wang, Qualitative analysis for a delayed epidemic model with latent and breaking -out over the internet, Adv. Difference Equ. 31 (2017), pp. 1–13. doi: 10.1080/10236198.2017.1307349

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.