2,523
Views
84
CrossRef citations to date
0
Altmetric
Reviews

Numerical methods for fractional partial differential equations

&
Pages 1048-1099 | Received 21 Feb 2017, Accepted 22 May 2017, Published online: 04 Jul 2017

References

  • A.A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys. 280 (2015), pp. 424–438. doi: 10.1016/j.jcp.2014.09.031
  • A.A. Alikhanov, Numerical methods of solutions of boundary value problems for the multi-term variable distributed order diffusion equation, Appl. Math. Comput. 268 (2015), pp. 12–22.
  • B. Alpert, L. Greengard, and T. Hagstrom, Rapid evaluation of nonreflecting boundary kernels for time-domain wave propagation, SIAM. J. Numer. Anal. 37 (2000), pp. 1138–1164. doi: 10.1137/S0036142998336916
  • D. Baffet and J.S. Hesthaven, A kernel compression scheme for fractional differential equations, SIAM. J. Numer. Anal. 55 (2017), pp. 496–520. doi: 10.1137/15M1043960
  • W.P. Bu, Y.F. Tang, and J.Y. Yang, Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations, J. Comput. Phys. 276 (2014), pp. 26–38. doi: 10.1016/j.jcp.2014.07.023
  • W.P. Bu, Y.F. Tang, Y.C. Wu, and J.Y. Yang, Finite difference/finite element method for two-dimensional space and time fractional Bloch-Torrey equations, J. Comput. Phys. 293 (2015), pp. 264–279. doi: 10.1016/j.jcp.2014.06.031
  • W.P. Bu, Y.F. Tang, Y.C. Wu, and J.Y. Yang, Crank–Nicolson ADI Galerkin finite element method for two-dimensional fractional FitzHugh-Nagumo monodomain model, Appl. Math. Comput. 257 (2015), pp. 355–364.
  • W.P. Bu, A. Xiao, and W. Zeng, Finite difference/finite element methods for distributed-order time fractional diffusion equations, J. Sci. Comput. (2017), pp. 1–20. doi: 10.1007/s10915-017-0360-8.
  • B.L. Buzbee, G.H. Golub, and C.W. Nielson, On direct methods for solving Poisson's equations, SIAM. J. Numer. Anal. 7 (1970), pp. 627–656. doi: 10.1137/0707049
  • J.X. Cao, C.P. Li, and Y. Chen, High-order approximation to Caputo derivatives and Caputo-type advection–diffusion equations (II), Fract. Calc. Appl. Anal. 18 (2015), pp. 735–761. doi: 10.1515/fca-2015-0045
  • W. Cao, F.H. Zeng, Z. Zhang, and G.E. Karniadakis, Implicit–explicit difference schemes for nonlinear fractional differential equations with nonsmooth solutions, SIAM J. Sci. Comput. 38 (2016), pp. A3070–A3093. doi: 10.1137/16M1070323
  • Ç. Cem and M. Duman, Crank–Nicolson method for the fractional diffusion equation with the Riesz fractional derivative, J. Comput. Phys. 231 (2012), pp. 1743–1750. doi: 10.1016/j.jcp.2011.11.008
  • M.H. Chen and W.H. Deng, A second-order numerical method for two-dimensional two-sided space fractional convection diffusion equation, Appl. Math. Model. 38 (2014), pp. 3244–3259. doi: 10.1016/j.apm.2013.11.043
  • M.H. Chen and W.H. Deng, Fourth order accurate scheme for the space fractional diffusion equations, SIAM. J. Numer. Anal. 52 (2014), pp. 1418–1438. doi: 10.1137/130933447
  • M.H. Chen, W.H. Deng, and Y.J. Wu, Superlinearly convergent algorithms for the two-dimensional space-time Caputo-Riesz fractional diffusion equation, Appl. Numer. Math. 70 (2013), pp. 22–41. doi: 10.1016/j.apnum.2013.03.006
  • A. Chen, Q. Du, C.P. Li, and Z. Zhou, Asymptotically compatible schemes for space-time nonlocal diffusion equations, Chaos, Solitons & Fractals (2017), doi: 10.1016/j.chaos.2017.03.061.
  • A. Chen and C.P. Li, A novel compact ADI scheme for the time-fractional subdiffusion equation in two space dimensions, Int. J. Comput. Math. 93 (2016), pp. 889–914. doi: 10.1080/00207160.2015.1009905
  • A. Chen and C.P. Li, Numerical solution of fractional diffusion-wave equation, Numer. Funct. Anal. Optim. 37 (2016), pp. 19–39. doi: 10.1080/01630563.2015.1078815
  • C.M. Chen, F. Liu, I. Turner, and V. Anh, A Fourier method for the fractional diffusion equation describing sub-diffusion, J. Comput. Phys. 227 (2007), pp. 886–897. doi: 10.1016/j.jcp.2007.05.012
  • C.-M. Chen, F. Liu, I. Turner, and V. Anh, Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation, Numer. Algorithms 54 (2010), pp. 1–21. doi: 10.1007/s11075-009-9320-1
  • H. Chen, S. Lü, and W. Chen, Finite difference/spectral approximations for the distributed order time fractional reaction-diffusion equation on an unbounded domain, J. Comput. Phys. 315 (2016), pp. 84–97. doi: 10.1016/j.jcp.2016.03.044
  • S. Chen, J. Shen, and L.-L. Wang, Generalized Jacobi functions and their applications to fractional differential equations, Math. Comput. 85 (2016), pp. 1603–1638. doi: 10.1090/mcom3035
  • X. Chen, F.H. Zeng, and G.E. Karniadakis, A tunable finite difference method for fractional differential equations with non-smooth solutions, Comput. Methods Appl. Mech. Eng. 318 (2017), pp. 193–214. doi: 10.1016/j.cma.2017.01.020
  • M.R. Cui, Compact finite difference method for the fractional diffusion equation, J. Comput. Phys. 228 (2009), pp. 7792–7804. doi: 10.1016/j.jcp.2009.07.021
  • M. Dehghan, M. Abbaszadeh, and A. Mohebbi, Analysis of a meshless method for the time fractional diffusion-wave equation, Numer. Algorithms 73 (2016), pp. 445–476. doi: 10.1007/s11075-016-0103-1
  • M. D'Elia and M. Gunzburger, The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator, Comput. Math. Appl. 66 (2013), pp. 1245–1260. doi: 10.1016/j.camwa.2013.07.022
  • W.H. Deng, Finite element method for the space and time fractional Fokker-Planck equation, SIAM. J. Numer. Anal. 47 (2008), pp. 204–226. doi: 10.1137/080714130
  • W.H. Deng and J.S. Hesthaven, Local discontinuous Galerkin methods for fractional diffusion equations, Math. Model. Numer. Anal. 47 (2013), pp. 1845–1864. doi: 10.1051/m2an/2013091
  • H.F. Ding and C.P. Li, Mixed spline function method for reaction-subdiffusion equations, J. Comput. Phys. 242 (2013), pp. 103–123. doi: 10.1016/j.jcp.2013.02.014
  • H.F. Ding and C.P. Li, High-order algorithms for Riesz derivative and their applications (III), Fract. Calc. Appl. Anal. 19 (2016), pp. 19–55. doi: 10.1515/fca-2016-0003
  • H.F. Ding and C.P. Li, Fractional-compact numerical algorithms for Riesz spatial fractional reaction-dispersion equations, Fract. Calc. Appl. Anal. 20(3) (2017), pp. 722–764.
  • H.F. Ding and C.P. Li, High-order algorithms for Riesz derivative and their applications (V), Numer. Methods Partial Differ. Equ. (2017), doi: 10.1002/num.22169.
  • H.F. Ding, C.P. Li, and Q. Yi. A new second-order midpoint approximation formula for Riemann-Liouville derivative: algorithm and its application, IMA J. Appl. Math. (2017), doi.org/doi: 10.1093/imamat/hxx019.
  • H.F. Ding and C.P. Li, High-order compact difference schemes for the modified anomalous subdiffusion equation, Numer. Methods Partial Differ. Equ. 32(1) (2016), pp. 213–242. doi: 10.1002/num.21992
  • H.F. Ding and C.P. Li, High-order numerical algorithms for Riesz derivatives via constructing new generating functions, J. Sci. Comput. 71(2) (2017), pp. 759–784. doi: 10.1007/s10915-016-0317-3
  • H.F. Ding, C.P. Li, and Y.Q. Chen, High-order algorithms for Riesz derivative and their applications (I), Abstract and Applied Analysis 2014 (2014), Article ID 653797.
  • H.F. Ding, C.P. Li, and Y.Q. Chen, High-order algorithms for Riesz derivative and their applications (II), J. Comput. Phys. 293 (2015), pp. 218–237. doi: 10.1016/j.jcp.2014.06.007
  • R. Du, W.R. Cao, and Z.Z. Sun, A compact difference scheme for the fractional diffusion-wave equation, Appl. Math. Model. 34 (2010), pp. 2998–3007. doi: 10.1016/j.apm.2010.01.008
  • Q. Du, M. Gunzburger, R.B. Lehoucq, and K. Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Review 54 (2012), pp. 667–696. doi: 10.1137/110833294
  • V.J. Ervin and J.P. Roop, Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Differ. Equ. 22 (2006), pp. 558–576. doi: 10.1002/num.20112
  • L. Fatone and D. Funaro, Optimal collocation nodes for fractional derivative operators, SIAM J. Scient. Comput. 37 (2015), pp. A1504–A1524. doi: 10.1137/140993697
  • L.B. Feng, P. Zhuang, F. Liu, I. Turner, and Y.T. Gu, Finite element method for space-time fractional diffusion equation, Numer. Algorithms 72 (2016), pp. 749–767. doi: 10.1007/s11075-015-0065-8
  • G.J. Fix and J.P. Roop, Least squares finite-element solution of a fractional order two-point boundary value problem, Comput. Math. Appl. 48 (2004), pp. 1017–1033. doi: 10.1016/j.camwa.2004.10.003
  • G.H. Gao and Z.Z. Sun, A compact finite difference scheme for the fractional sub-diffusion equations, J. Comput. Phys. 230 (2011), pp. 586–595. doi: 10.1016/j.jcp.2010.10.007
  • G.H. Gao and Z.Z. Sun, Two alternating direction implicit difference schemes for two-dimensional distributed-order fractional diffusion equations, J. Sci. Comput. 66 (2016), pp. 1281–1312. doi: 10.1007/s10915-015-0064-x
  • G.H. Gao, H.W. Sun, and Z.Z. Sun, Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain superconvergence, J. Comput. Phys. 280 (2015), pp. 510–528. doi: 10.1016/j.jcp.2014.09.033
  • G.H. Gao, H.W. Sun, and Z.Z. Sun, Some high-order difference schemes for the distributed-order differential equations, J. Comput. Phys. 298 (2015), pp. 337–359. doi: 10.1016/j.jcp.2015.05.047
  • G.H. Gao, Z.Z. Sun, and H.W. Zhang, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, J. Comput. Phys. 259 (2014), pp. 33–50. doi: 10.1016/j.jcp.2013.11.017
  • B.-Y. Guo, J. Shen, and L.-L. Wang, Generalized Jacobi polynomials/functions and their applications, Appl. Numer. Math. 59 (2009), pp. 1011–1028. doi: 10.1016/j.apnum.2008.04.003
  • Z.P. Hao and W.R. Cao, An improved algorithm based on finite difference schemes for fractional boundary value problems with nonsmooth solution, Journal of Scientific Computation (2017), doi:10.1007/s10915-017-0417-8.
  • Z.P. Hao, Z.Z. Sun, and W.R. Cao, A fourth-order approximation of fractional derivatives with its applications, J. Comput. Phys. 281 (2015), pp. 787–805. doi: 10.1016/j.jcp.2014.10.053
  • H. Hejazi, T. Moroney, and F. Liu, Stability and convergence of a finite volume method for the space fractional advection–dispersion equation, J. Comput. Appl. Math. 255 (2014), pp. 684–697. doi: 10.1016/j.cam.2013.06.039
  • V.R. Hosseini, E. Shivanian, and W. Chen, Local radial point interpolation (MLRPI) method for solving time fractional diffusion-wave equation with damping, J. Comput. Phys. 312 (2016), pp. 307–332. doi: 10.1016/j.jcp.2016.02.030
  • Y. Hu, C.P. Li, and H.F. Li, The finite difference method for Caputo-type parabolic equation with fractional Laplacian: One-dimension case, Chaos, Solit. Fract (2017), doi: 10.1016/j.chaos.2017.03.038.
  • X. Hu, F. Liu, I. Turner, and V. Anh, An implicit numerical method of a new time distributed-order and two-sided space-fractional advection–dispersion equation, Numer. Algorithms 72 (2016), pp. 393–407. doi: 10.1007/s11075-015-0051-1
  • X.L. Hu and L.M. Zhang, An analysis of a second order difference scheme for the fractional subdiffusion system, Appl. Math. Model. 40 (2016), pp. 1634–1649. doi: 10.1016/j.apm.2015.08.010
  • J.F. Huang, N.M. Nie, and Y.F. Tang, A second order finite difference-spectral method for space fractional diffusion equations, Science China Math. 57 (2014), pp. 1303–1317. doi: 10.1007/s11425-013-4716-8
  • J.F. Huang, Y.F. Tang, L. Vázquez, and J.Y. Yang, Two finite difference schemes for time fractional diffusion-wave equation, Numer. Algorithms 64 (2013), pp. 707–720. doi: 10.1007/s11075-012-9689-0
  • M. Ilic, F. Liu, I. Turner, and V. Anh, Numerical approximation of a fractional-in-space diffusion equation, I, Fract. Calc. Appl. Anal. 8 (2005), pp. 323–341.
  • M. Ilic, F. Liu, I. Turner, and V. Anh, Numerical approximation of a fractional-in-space diffusion equation (II)-with nonhomogeneous boundary conditions, Fract. Calc. Appl. Anal. 9 (2006), pp. 333–349.
  • J.H. Jia and H. Wang, A preconditioned fast finite volume scheme for a fractional differential equation discretized on a locally refined composite mesh, J. Comput. Phys. 299 (2015), pp. 842–862. doi: 10.1016/j.jcp.2015.06.028
  • S. Jiang, L. Greengard, and S. Wang, Efficient sum-of-exponentials approximations for the heat kernel and their applications, Adv. Comput. Math. 41 (2015), pp. 529–551. doi: 10.1007/s10444-014-9372-1
  • Y.G. Jiang and J.T. Ma, High-order finite element methods for time-fractional partial differential equations, J. Comput. Appl. Math. 235 (2011), pp. 3285–3290. doi: 10.1016/j.cam.2011.01.011
  • S. Jiang, J. Zhang, Q. Zhang, and Z. Zhang, Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations, Commun. Comput. Phys. 21 (2017), pp. 650–678. doi: 10.4208/cicp.OA-2016-0136
  • B. Jin and Z. Zhou, A finite element method with singularity reconstruction for fractional boundary value problems, ESAIM Math. Model. Numer. Anal. 49 (2015), pp. 1261–1283. doi: 10.1051/m2an/2015010
  • B. Jin, R. Lazarov, and Z. Zhou, Error estimates for a semidiscrete finite element method for fractional order parabolic equations, SIAM. J. Numer. Anal. 51 (2013), pp. 445–466. doi: 10.1137/120873984
  • B. Jin, R. Lazarov, Y. Liu, and Z. Zhou, The Galerkin finite element method for a multi-term time-fractional diffusion equation, J. Comput. Phys. 281 (2015), pp. 825–843. doi: 10.1016/j.jcp.2014.10.051
  • B. Jin, R. Lazarov, X. Lu, and Z. Zhou, A simple finite element method for boundary value problems with a Riemann-Liouville derivative, J. Comput. Appl. Math. 293 (2016), pp. 94–111. doi: 10.1016/j.cam.2015.02.058
  • B. Jin, R. Lazarov, J. Pasciak, and W. Rundell, Variational formulation of problems involving fractional order differential operators, Math. Comput. 84 (2015), pp. 2665–2700. doi: 10.1090/mcom/2960
  • B. Jin, R. Lazarov, J. Pasciak, and Z. Zhou, Error analysis of a finite element method for the space-fractional parabolic equation, SIAM. J. Numer. Anal. 52 (2014), pp. 2272–2294. doi: 10.1137/13093933X
  • B. Jin, R. Lazarov, D. Sheen, and Z. Zhou, Error estimates for approximations of distributed order time fractional diffusion with nonsmooth data, Fract. Calc. Appl. Anal. 19 (2016), pp. 69–93. doi: 10.1515/fca-2016-0005
  • B. Jin, R. Lazarov, and Z. Zhou, A Petrov–Galerkin finite element method for fractional convection–diffusion equation, SIAM. J. Numer. Anal. 54 (2016), pp. 481–503. doi: 10.1137/140992278
  • B. Jin, R. Lazarov, and Z. Zhou, Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data, SIAM J. Scient. Comput. 38 (2016), pp. A146–A170. doi: 10.1137/140979563
  • R.H. Ke, M.K. Ng, and H.W. Sun, A fast direct method for block triangular Toeplitz-like with tri-diagonal block systems from time-fractional partial differential equations, J. Comput. Phys. 303 (2015), pp. 203–211. doi: 10.1016/j.jcp.2015.09.042
  • A.Q.M. Khaliq, X. Liang, and K.M. Furati, A fourth-order implicit–explicit scheme for the space fractional nonlinear Schrödinger equations, Numer. Algorithms 75 (2017), pp. 147–172. doi: 10.1007/s11075-016-0200-1
  • T. Langlands and B. Henry, The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comput. Phys. 205 (2005), pp. 719–736. doi: 10.1016/j.jcp.2004.11.025
  • K.N. Le, W. McLean, and K. Mustapha, Numerical solution of the time-fractional Fokker-Planck equation with general forcing, SIAM. J. Numer. Anal. 54 (2016), pp. 1763–1784. doi: 10.1137/15M1031734
  • S.L. Lei and H.W. Sun, A circulant preconditioner for fractional diffusion equations, J. Comput. Phys. 242 (2013), pp. 715–725. doi: 10.1016/j.jcp.2013.02.025
  • C.P. Li and M. Cai, High-order approximation to Caputo derivatives and Caputo-type advection–diffusion equations: Revisited, Numer. Funct. Anal. Optim. doi: 10.1080/01630563.2017.1291521. Available at http://cn.mathworks.com/matlabcentral/fileexchange/61256, ibid 61260.
  • C.P. Li and W.H. Deng, Remarks on fractional derivatives, Appl. Math. Comput. 187 (2007), pp. 777–784.
  • C.P. Li and H.F. Ding, Higher order finite difference method for the reaction and anomalous-diffusion equation, Appl. Math. Model. 38 (2014), pp. 3802–3821. doi: 10.1016/j.apm.2013.12.002
  • C.K. Li and C.P. Li, On defining the distributions δk and (δ′)k by fractional derivatives, Appl. Math. Comput. 246 (2014), pp. 502–513.
  • C.K. Li and C.P. Li, Remarks on fractional derivatives of distributions, Tbilisi Math. J. 10(1) (2017), pp. 1–18. doi: 10.1515/tmj-2017-0001
  • X.J. Li and C.J. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM. J. Numer. Anal. 47 (2009), pp. 2108–2131. doi: 10.1137/080718942
  • X.J. Li and C.J. Xu, Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation, Commun. Comput. Phys. 8 (2010), pp. 1016–1051.
  • C.P. Li and F.H. Zeng, Finite difference methods for fractional differential equations, Int. J. Bifur. Chaos 22 (2012), pp. 427–432.
  • C.P. Li and F.H. Zeng, Finite element methods for fractional differential equation, in Recent Advances in Applied Nonlinear Dynamics with Numerical Analysis, C.P. Li, Y.J. Wu, R.S. Ye, eds., World Scientific, Singapore, 2013, pp. 49–68.
  • C.P. Li and F.H. Zeng, Numerical Methods for Fractional Calculus, Chapman and Hall/CRC Press, Boca Raton, FL, 2015.
  • C.P. Li, F.H. Zeng, and F. Liu, Spectral approximations to the fractional integral and derivative, Fract. Calc. Appl. Anal. 15 (2012), pp. 383–406.
  • C.P. Li, Z.G. Zhao, and Y.Q. Chen, Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion, Comput. Math. Appl. 62 (2011), pp. 855–875. doi: 10.1016/j.camwa.2011.02.045
  • H.F. Li, J.X. Cao, and C.P. Li, High-order approximation to Caputo derivatives and Caputo-type advection–diffusion equations (III), J. Comput. Appl. Math. 299 (2016), pp. 159–175. Available at http://www.mathworks.com/matlabcentral/fileexchange/53924, ibid 53925. doi: 10.1016/j.cam.2015.11.037
  • C.K. Li, C.P. Li, B. Kacsmar, R. Lacroix, and K. Tilbury, The Abel's integral equations in distribution, Advances in Analysis 2(2) (2017), pp. 88–104.
  • C.P. Li, R.F. Wu, and H.F. Ding, High-order approximation to Caputo derivatives and Caputo-type advection–diffusion equations, Commun. Appl. Ind. Math. 6 (2014), pp. 1–32. e-536.
  • L.M. Li, D. Xu, and M. Luo, Alternating direction implicit Galerkin finite element method for the two-dimensional fractional diffusion-wave equation, J. Comput. Phys. 255 (2013), pp. 471–485. doi: 10.1016/j.jcp.2013.08.031
  • C.P. Li, Q. Yi, and A. Chen, Finite difference methods with non-uniform meshes for nonlinear fractional differential equations, J. Comput. Phys. 316 (2016), pp. 614–631. doi: 10.1016/j.jcp.2016.04.039
  • X. Liang, A.Q.M. Khaliq, H. Bhatt, and K.M. Furati, The locally extrapolated exponential splitting scheme for multi-dimensional nonlinear space-fractional Schrödinger equations, Numer. Algorithms (2017), doi: 10.1007/s11075-017-0291-3.
  • Y.M. Lin, X.J. Li, and C.J. Xu, Finite difference/spectral approximations for the fractional cable equation, Math. Comput. 80 (2011), pp. 1369–1396. doi: 10.1090/S0025-5718-2010-02438-X
  • Y.M. Lin and C.J. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys. 225 (2007), pp. 1533–1552. doi: 10.1016/j.jcp.2007.02.001
  • Q. Liu, F. Liu, I. Turner, and V. Anh, Finite element approximation for a modified anomalous subdiffusion equation, Appl. Math. Model. 35 (2011), pp. 4103–4116. doi: 10.1016/j.apm.2011.02.036
  • F. Liu, C. Yang, and K. Burrage, Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term, J. Comput. Appl. Math. 231 (2009), pp. 160–176. doi: 10.1016/j.cam.2009.02.013
  • F. Liu, P. Zhuang, I. Turner, K. Burrage, and V. Anh, A new fractional finite volume method for solving the fractional diffusion equation, Appl. Math. Model. 38 (2014), pp. 3871–3878. doi: 10.1016/j.apm.2013.10.007
  • Q. Liu, F.H. Zeng, and C.P. Li, Finite difference method for time-space-fractional Schrödinger equation, Int. J. Comput. Math. 92 (2015), pp. 1439–1451. doi: 10.1080/00207160.2014.945440
  • Y. Liu, Y.W. Du, H. Li, and J.F. Wang, An H1-Galerkin mixed finite element method for time fractional reaction-diffusion equation, Journal of Applied Mathematics and Computating 47 (2015), pp. 103–117. doi: 10.1007/s12190-014-0764-7
  • F. Liu, P. Zhuang, and Q. Liu, Numerical Methods for Fractional Partial Differential Equations and Their Applications, Science Press, Beijing, 2015. (in Chinese).
  • F. Liu, P. Zhuang, I. Turner, V. Anh, and K. Burrage, A semi-alternating direction method for a 2-D fractional FitzHugh-Nagumo monodomain model on an approximate irregular domain, J. Comput. Phys. 293 (2015), pp. 252–263. doi: 10.1016/j.jcp.2014.06.001
  • C.F. Lorenzo and T.T. Hartley, Variable order and distributed order fractional operators, Nonlinear. Dyn. 29 (2002), pp. 57–98. doi: 10.1023/A:1016586905654
  • C. Lubich, Discretized fractional calculus, SIAM J. Math. Anal. 17 (1986), pp. 704–719. doi: 10.1137/0517050
  • V. Lynch, B. Carreras, D. del Castillo-Negrete, K. Ferreira-Mejias, and H. Hicks, Numerical methods for the solution of partial differential equations of fractional order, J. Comput. Phys. 192 (2003), pp. 406–421. doi: 10.1016/j.jcp.2003.07.008
  • J.T. Ma, J.Q. Liu, and Z.Q. Zhou, Convergence analysis of moving finite element methods for space fractional differential equations, J. Comput. Appl. Math. 255 (2014), pp. 661–670. doi: 10.1016/j.cam.2013.06.021
  • J.A.T. Machado, F. Mainardi, V. Kiryakova, and T. Atanacković, Fractional calculus: D'où venons-nous? Que sommes-nous? Où allons-nous?, Fract. Calc. Appl. Anal. 19 (2016), pp. 1074–1104. doi: 10.1515/fca-2016-0059
  • W. McLean and K. Mustapha, A second-order accurate numerical method for a fractional wave equation, Numer. Math. 105 (2007), pp. 481–510. doi: 10.1007/s00211-006-0045-y
  • W. McLean and K. Mustapha, Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation, Numer. Algorithms 52 (2009), pp. 69–88. doi: 10.1007/s11075-008-9258-8
  • W. McLean and V. Thomée, Time discretization of an evolution equation via Laplace transforms, IMA J. Numer. Anal. 24 (2004), pp. 439–463. doi: 10.1093/imanum/24.3.439
  • W. McLean and V. Thomée, Numerical solution via Laplace transforms of a fractional order evolution equation, J. Integral Equ. Appl. 22 (2010), pp. 57–94. doi: 10.1216/JIE-2010-22-1-57
  • M.M. Meerschaert, H.P. Scheffler, and C. Tadjeran, Finite difference methods for two-dimensional fractional dispersion equation, J. Comput. Phys. 211 (2006), pp. 249–261. doi: 10.1016/j.jcp.2005.05.017
  • M.M. Meerschaert and C. Tadjeran, Finite difference approximations for fractional advection–dispersion flow equations, J. Comput. Appl. Math. 172 (2004), pp. 65–77. doi: 10.1016/j.cam.2004.01.033
  • M.M. Meerschaert and C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math. 56 (2006), pp. 80–90. doi: 10.1016/j.apnum.2005.02.008
  • R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep. 339 (2000), pp. 1–77. doi: 10.1016/S0370-1573(00)00070-3
  • R. Metzler and T.F. Nonnenmacher, Space-and time-fractional diffusion and wave equations, fractional Fokker-Planck equations, and physical motivation, Chem. Phys. 284 (2002), pp. 67–90. doi: 10.1016/S0301-0104(02)00537-2
  • M.L. Morgado and M. Rebelo, Numerical approximation of distributed order reaction diffusion equations, J. Comput. Appl. Math. 275 (2015), pp. 216–227. doi: 10.1016/j.cam.2014.07.029
  • K. Mustapha, An implicit finite-difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements, IMA J. Numer. Anal. 31 (2011), pp. 719–739. doi: 10.1093/imanum/drp057
  • K. Mustapha, Time-stepping discontinuous Galerkin methods for fractional diffusion problems, Numer. Math. 130 (2015), pp. 497–516. doi: 10.1007/s00211-014-0669-2
  • K. Mustapha, B. Abdallah, and K.M. Furati, A discontinuous Petrov–Galerkin method for time-fractional diffusion equations, SIAM. J. Numer. Anal. 52 (2014), pp. 2512–2529. doi: 10.1137/140952107
  • K. Mustapha, B. Abdallah, K.M. Furati, and M. Nour, A discontinuous Galerkin method for tiem fractional diffusion equations with variable coefficients, Numer. Algorithms 73 (2016), pp. 517–534. doi: 10.1007/s11075-016-0106-y
  • K. Mustapha and J. AlMustawa, A finite difference method for an anomalous sub-diffusion equation, theory and applications, Numer. Algorithms 61 (2012), pp. 525–543. doi: 10.1007/s11075-012-9547-0
  • K. Mustapha, H. Brunner, H. Mustapha, and D. Schötzau, An hp-version discontinuous Galerkin method for integro-differential equations of parabolic type, SIAM. J. Numer. Anal. 49 (2011), pp. 1369–1396. doi: 10.1137/100797114
  • K. Mustapha and W. McLean, Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation, Numer. Algorithms 56 (2011), pp. 159–184. doi: 10.1007/s11075-010-9379-8
  • K. Mustapha and W. McLean, Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations, SIAM. J. Numer. Anal. 51 (2013), pp. 491–515. doi: 10.1137/120880719
  • K. Mustapha and D. Schötzau, Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations, IMA J. Numer. Anal. 34 (2014), pp. 1426–1446. doi: 10.1093/imanum/drt048
  • H.M. Nasir, B.L.K. Gunawardana, and H.M.N.P. Abeyrathna, A second order finite difference approximation for the fractional diffusion equation, Int. J. Appl. Phys. Math. 3 (2013), pp. 237–243. doi: 10.7763/IJAPM.2013.V3.212
  • K.B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.
  • M.D. Ortigueira, Riesz potential operators and inverses via fractional centred derivatives, Int. J. Math. Math. Sci. 2006 (2006), Article ID 48391, 12 pages. doi: 10.1155/IJMMS/2006/48391
  • J.Y. Pan, R.H. Ke, M.K. Ng, and H.-W. Sun, Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations, SIAM J. Scient. Comput. 36 (2014), pp. A2698–A2719. doi: 10.1137/130931795
  • H.K. Pang and H.W. Sun, Multigrid method for fractional diffusion equations, J. Comput. Phys. 231 (2012), pp. 693–703. doi: 10.1016/j.jcp.2011.10.005
  • I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1998.
  • L.L. Qiu, W.H. Deng, and J.S. Hesthaven, Nodal discontinuous Galerkin methods for fractional diffusion equations on 2D domain with triangular meshes, J. Comput. Phys. 298 (2015), pp. 678–694. doi: 10.1016/j.jcp.2015.06.022
  • J.C. Ren, Z.Z. Sun, and X. Zhao, Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions, J. Comput. Phys. 232 (2013), pp. 456–467. doi: 10.1016/j.jcp.2012.08.026
  • J.P. Roop, Variational solution of the fractional advection dispersion equation, PhD thesis, Clemson University, 2004.
  • S.G. Samko, A.A. Kilbas, and O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Amsterdam, 1993.
  • D. Sheen, I.H. Sloan, and V. Thomée, A parallel method for time-discretization of parabolic problems based on contour integral representation and quadrature, Math. Comput. 69 (2000), pp. 177–196. doi: 10.1090/S0025-5718-99-01098-4
  • D. Sheen, I.H. Sloan, and V. Thomée, A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature, IMA J. Numer. Anal. 23 (2003), pp. 269–299. doi: 10.1093/imanum/23.2.269
  • S.J. Shen, F. Liu, and V. Anh, Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection–diffusion equation, Numer. Algorithms 56 (2011), pp. 383–403. doi: 10.1007/s11075-010-9393-x
  • F.Y. Song and C.J. Xu, Spectral direction splitting methods for two-dimensional space fractional diffusion equations, J. Comput. Phys. 299 (2015), pp. 196–214. doi: 10.1016/j.jcp.2015.07.011
  • E. Sousa, Finite difference approximations for a fractional advection diffusion problem, J. Comput. Phys. 228 (2009), pp. 4038–4054. doi: 10.1016/j.jcp.2009.02.011
  • E. Sousa and C. Li, A weighted finite difference method for the fractional diffusion equation based on the Riemann-Liouville derivative, Appl. Numer. Math. 90 (2015), pp. 22–37. doi: 10.1016/j.apnum.2014.11.007
  • Z.Z. Sun and G.H. Gao, The Finite Difference Methods for Fractional Differential Equations, Chinese Scientific Press, Beijing, 2015. (in Chinese).
  • H. Sun, Z.-Z. Sun, and G.-H. Gao, Some temporal second order difference schemes for fractional wave equations, Numer. Methods Partial Differ. Equ. 32 (2016), pp. 970–1001. doi: 10.1002/num.22038
  • H. Sun, Z.Z. Sun, and G.H. Gao, Some high order difference schemes for the space and time fractional Bloch-Torrey equations, Appl. Math. Comput. 281 (2016), pp. 356–380.
  • Z.-Z. Sun and X.N. Wu, A fully discrete difference scheme for a diffusion-wave system, Applied Numerical Mathematics 56 (2006), pp. 193–209. doi: 10.1016/j.apnum.2005.03.003
  • C. Tadjeran and M.M. Meerschaert, A second-order accurate numerical method for the two-dimensional fractional diffusion equation, J. Comput. Phys. 220 (2007), pp. 813–823. doi: 10.1016/j.jcp.2006.05.030
  • C. Tadjeran, M.M. Meerschaert, and H.-P. Scheffler, A second-order accurate numerical approximation for the fractional diffusion equation, J. Comput. Phys. 213 (2006), pp. 205–213. doi: 10.1016/j.jcp.2005.08.008
  • W.Y. Tian, W.H. Deng, and Y.J. Wu, Polynomial spectral collocation method for space fractional advection-diffusion equation, Numer. Methods Partial Differ. Equ. 30 (2014), pp. 514–535. doi: 10.1002/num.21822
  • X.C. Tian and Q. Du, Analysis and comparison of different approximations to nonlocal diffusion and linear peridynamic equations, SIAM. J. Numer. Anal. 51 (2013), pp. 3458–3482. doi: 10.1137/13091631X
  • W.Y. Tian, H. Zhou, and W.H. Deng, A class of second order difference approximations for solving space fractional diffusion equations, Math. Comput. 84 (2015), pp. 1703–1727. doi: 10.1090/S0025-5718-2015-02917-2
  • V.K. Tuan and R. Gorenflo, Extrapolation to the limit for numerical fractional differentiation, ZAMM J. Appl. Math. Mech. 75 (1995), pp. 646–648. doi: 10.1002/zamm.19950750826
  • U.U. Uchaikin, Fractional Derivative for Physicists and Engineers, Higher Education Press, Beijing, 2013.
  • S. Vong and Z.B. Wang, A compact difference scheme for a two dimensional fractional Klein-Gordon equation with Neumann boundary conditions, J. Comput. Phys. 274 (2014), pp. 268–282. doi: 10.1016/j.jcp.2014.06.022
  • Y.-M. Wang, A compact finite difference method for solving a class of time fractional convection-subdiffusion equations, BIT Numer. Math. 55 (2015), pp. 1187–1217. doi: 10.1007/s10543-014-0532-y
  • H. Wang and T.S. Basu, A fast finite difference method for two-dimensional space-fractional diffusion equations, SIAM J. Scient. Comput. 34 (2012), pp. A2444–A2458. doi: 10.1137/12086491X
  • H. Wang and N. Du, A fast finite difference method for three-dimensional time-dependent space-fractional diffusion equations and its efficient implementation, J. Comput. Phys. 253 (2013), pp. 50–63. doi: 10.1016/j.jcp.2013.06.040
  • H. Wang and N. Du, Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations, J. Comput. Phys. 258 (2014), pp. 305–318. doi: 10.1016/j.jcp.2013.10.040
  • Z.B. Wang and S. Vong, Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation, J. Comput. Phys. 277 (2014), pp. 1–15. doi: 10.1016/j.jcp.2014.08.012
  • H. Wang and K.X. Wang, An O(Nlog2⁡N) alternating-direction finite difference method for two-dimensional fractional diffusion equations, J. Comput. Phys. 230 (2011), pp. 7830–7839. doi: 10.1016/j.jcp.2011.07.003
  • H. Wang, K.X. Wang, and T. Sircar, A direct O(Nlog2⁡N) finite difference method for fractional diffusion equations, J. Comput. Phys. 229 (2010), pp. 8095–8104. doi: 10.1016/j.jcp.2010.07.011
  • H. Wang and D.P. Yang, Wellposedness of variable-coefficient conservative fractional elliptic differential equations, SIAM. J. Numer. Anal. 51 (2013), pp. 1088–1107. doi: 10.1137/120892295
  • H. Wang, D.P. Yang, and S.F. Zhu, Inhomogeneous Dirichlet boundary-value problems of space-fractional diffusion equations and their finite element approximations, SIAM. J. Numer. Anal. 52 (2014), pp. 1292–1310. doi: 10.1137/130932776
  • Y. Wang, Y. Liu, H. Li, and J. Wang, Finite element method combined with second-order time discrete scheme for nonlinear fractional Cable equation, Eur. Phys. J. Plus 131 (2016), pp. 1–16. doi: 10.1140/epjp/i2016-16001-3
  • H. Wang, D.P. Yang, and S.F. Zhu, Accuracy of finite element methods for boundary-value problems of steady-state fractional diffusion equations, J. Sci. Comput. 70 (2017), pp. 429–449. doi: 10.1007/s10915-016-0196-7
  • C.H. Wu and L.Z. Lu, Implicit numerical approximation scheme for the fractional Fokker-Planck equation, Appl. Math. Comput. 216 (2010), pp. 1945–1955.
  • Q.W. Xu and J.S. Hesthaven, Discontinuous Galerkin method for fractional convection–diffusion equations, SIAM. J. Numer. Anal. 52 (2014), pp. 405–423. doi: 10.1137/130918174
  • Q.W. Xu and J.S. Hesthaven, Stable multi-domain spectral penalty methods for fractional partial differential equations, J. Comput. Phys. 257 (2014), pp. 241–258. doi: 10.1016/j.jcp.2013.09.041
  • J.Y. Yang, J.F. Huang, D.M. Liang, and Y.F. Tang, Numerical solution of fractional diffusion-wave equation based on fractional multistep method, Appl. Math. Model. 38 (2014), pp. 3652–3661. doi: 10.1016/j.apm.2013.11.069
  • Q. Yang, F. Liu, and I. Turner, Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Appl. Math. Model. 34 (2010), pp. 200–218. doi: 10.1016/j.apm.2009.04.006
  • H. Ye, F. Liu, and V. Anh, Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains, J. Comput. Phys. 298 (2015), pp. 652–660. doi: 10.1016/j.jcp.2015.06.025
  • B. Yu, X.Y. Jiang, and H.Y. Xu, A novel compact numerical method for solving the two-dimensional non-linear fractional reaction-subdiffusion equation, Numer. Algorithms 68 (2015), pp. 923–950. doi: 10.1007/s11075-014-9877-1
  • S.B. Yuste, Weighted average finite difference methods for fractional diffusion equations, J. Comput. Phys. 216 (2006), pp. 264–274. doi: 10.1016/j.jcp.2005.12.006
  • S.B. Yuste and L. Acedo, An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations, SIAM. J. Numer. Anal. 42 (2005), pp. 1862–1874. doi: 10.1137/030602666
  • M. Zayernouri, M. Ainsworth, and G.E. Karniadakis, A unified Petrov-Galerkin spectral method for fractional PDEs, Comput. Methods Appl. Mech. Eng. 283 (2015), pp. 1545–1569. doi: 10.1016/j.cma.2014.10.051
  • M. Zayernouri, W. Cao, Z. Zhang, and G.E. Karniadakis, Spectral and discontinuous spectral element methods for fractional delay equations, SIAM Journal on Scientific Computing 36 (2014), pp. B904–B929. doi: 10.1137/130935884
  • M. Zayernouri and G.E. Karniadakis, Fractional Sturm-Liouville eigen-problems: Theory and numerical approximation, J. Comput. Phys. 252 (2013), pp. 495–517. doi: 10.1016/j.jcp.2013.06.031
  • M. Zayernouri and G.E. Karniadakis, Exponentially accurate spectral and spectral element methods for fractional ODEs, J. Comput. Phys. 257 (2014), pp. 460–480. doi: 10.1016/j.jcp.2013.09.039
  • M. Zayernouri and G.E. Karniadakis, Discontinuous spectral element methods for time-and space-fractional advection equations, SIAM J. Scient. Comput. 36 (2014), pp. B684–B707. doi: 10.1137/130940967
  • M. Zayernouri and G.E. Karniadakis, Fractional spectral collocation method, SIAM J. Sci. Comput. 36 (2014), pp. A40–A62. doi: 10.1137/130933216
  • M. Zayernouri and G.E. Karniadakis, Fractional spectral collocation methods for linear and nonlinear variable order FPDEs, J. Comput. Phys. 293 (2015), pp. 312–338. doi: 10.1016/j.jcp.2014.12.001
  • F.H. Zeng, Second-order stable finite difference schemes for the time-fractional diffusion-wave equation, J. Sci. Comput. 65 (2015), pp. 411–430. doi: 10.1007/s10915-014-9966-2
  • F.H. Zeng and C.P. Li, Fractional differentiation matrices with applications, preprint (2014), Available at arXiv:1404.4429.
  • F.H. Zeng and C.P. Li, A new Crank–Nicolson finite element method for the time-fractional subdiffusion equation, submitted, 2014; revised 2017.
  • F.H. Zeng, C.P. Li, and F. Liu, High-order explicit–implicit numerical methods for nonlinear anomalous diffusion equations, Eur. Phys. J. Spec. Top. 222 (2013), pp. 1885–1900. doi: 10.1140/epjst/e2013-01971-3
  • F.H. Zeng, C.P. Li, F. Liu, and I. Turner, The use of finite difference/element approaches for solving the time-fractional subdiffusion equation, SIAM J. Sci. Comput. 35 (2013), pp. A2976–A3000. doi: 10.1137/130910865
  • F.H. Zeng, F. Liu, C.P. Li, K. Burrage, I. Turner, and V. Anh, A Crank–Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation, SIAM. J. Numer. Anal. 52 (2014), pp. 2599–2622. doi: 10.1137/130934192
  • F.H. Zeng, C.P. Li, F. Liu, and I. Turner, Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy, SIAM J. Scient. Comput. 37 (2015), pp. A55–A78. doi: 10.1137/14096390X
  • F.H. Zeng, Z.Q. Zhang, and G.E. Karniadakis, A generalized spectral collocation method with tunable accuracy for variable-order fractional differential equations, SIAM J. Sci. Comput. 37 (2015), pp. A2710–A2732. doi: 10.1137/141001299
  • F.H. Zeng, Z.Q. Zhang, and G.E. Karniadakis, Fast difference schemes for solving high-dimensional time-fractional subdiffusion equations, J. Comput. Phys. 307 (2016), pp. 15–33. doi: 10.1016/j.jcp.2015.11.058
  • F.H. Zeng, Z. Mao, and G.E. Karniadakis, A generalized spectral collocation method with tunable accuracy for fractional differential equations with end-point singularities, SIAM J. Sci. Comput. 39 (2017), pp. A360–A383. doi: 10.1137/16M1076083
  • F.H. Zeng, I. Turner, and K. Burrage, A stable fast time-stepping method for fractional integral and derivative operators, preprint (2017), Available at arXiv:1703.05480.
  • S.Y. Zhai, X.L. Feng, and Y.N. He, An unconditionally stable compact ADI method for three-dimensional time-fractional convection–diffusion equation, J. Comput. Phys. 269 (2014), pp. 138–155. doi: 10.1016/j.jcp.2014.03.020
  • Y.N. Zhang and Z.Z. Sun, Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation, J. Comput. Phys. 230 (2011), pp. 8713–8728. doi: 10.1016/j.jcp.2011.08.020
  • Y.N. Zhang and Z.Z. Sun, Error analysis of a compact ADI scheme for the 2D fractional subdiffusion equation, J. Sci. Comput. 59 (2014), pp. 104–128. doi: 10.1007/s10915-013-9756-2
  • H. Zhang, F. Liu, and V. Anh, Galerkin finite element approximation of symmetric space-fractional partial differential equations, Appl. Math. Comput. 217 (2010), pp. 2534–2545.
  • Y.-N. Zhang, Z.-Z. Sun, and H.-W. Wu, Error estimates of Crank-Nicolson-type difference schemes for the subdiffusion equation, SIAM. J. Numer. Anal. 49 (2011), pp. 2302–2322. doi: 10.1137/100812707
  • Y.N. Zhang, Z.Z. Sun, and X. Zhao, Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation, SIAM. J. Numer. Anal. 50 (2012), pp. 1535–1555. doi: 10.1137/110840959
  • Y.N. Zhang, Z.Z. Sun, and H.L. Liao, Finite difference methods for the time fractional diffusion equation on non-uniform meshes, J. Comput. Phys. 265 (2014), pp. 195–210. doi: 10.1016/j.jcp.2014.02.008
  • L. Zhang, H.W. Sun, and H.K. Pang, Fast numerical solution for fractional diffusion equations by exponential quadrature rule, J. Comput. Phys. 299 (2015), pp. 130–143. doi: 10.1016/j.jcp.2015.07.001
  • L.J. Zhao and W.H. Deng, A series of high-order quasi-compact schemes for space fractional diffusion equations based on the superconvergent approximations for fractional derivatives, Numer. Methods Partial Differ. Equ. 31 (2015), pp. 1345–1381. doi: 10.1002/num.21947
  • Z.G. Zhao and C.P. Li, Fractional difference/finite element approximations for the time-space fractional telegraph equation, Appl. Math. Comput. 219 (2012), pp. 2975–2988.
  • X. Zhao, Z.Z. Sun, and Z.P. Hao, A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation, SIAM J. Sci. Comput. 36 (2014), pp. A2865–A2886. doi: 10.1137/140961560
  • X. Zhao, Z.Z. Sun, and G.E. Karniadakis, Second-order approximations for variable order fractional derivatives: Algorithms and applications, J. Comput. Phys. 293 (2015), pp. 184–200. doi: 10.1016/j.jcp.2014.08.015
  • C. Zheng, Approximation, stability and fast evaluation of exact artificial boundary condition for the one-dimensional heat equation, J. Comput. Math. 25 (2007), pp. 730–745.
  • Y.Y. Zheng, C.P. Li, and Z.G. Zhao, A note on the finite element method for the space-fractional advection diffusion equation, Comput. Math. Appl. 59 (2010), pp. 1718–1726. doi: 10.1016/j.camwa.2009.08.071
  • M. Zheng, F. Liu, I. Turner, and V. Anh, A novel high order space-time spectral method for the time fractional Fokker-Planck equation, SIAM J. Scient. Comput. 37 (2015), pp. A701–A724. doi: 10.1137/140980545
  • M. Zheng, F. Liu, V. Anh, and I. Turner, A high-order spectral method for the multi-term time-fractional diffusion equations, Appl. Math. Model. 40 (2016), pp. 4970–4985. doi: 10.1016/j.apm.2015.12.011
  • H. Zhou, W.Y. Tian, and W.H. Deng, Quasi-compact finite difference schemes for space fractional diffusion equations, J. Sci. Comput. 56 (2013), pp. 45–66. doi: 10.1007/s10915-012-9661-0
  • P. Zhuang, F. Liu, V. Anh, and I. Turner, New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation, SIAM. J. Numer. Anal. 46 (2008), pp. 1079–1095. doi: 10.1137/060673114

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.