123
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Application of the dual reciprocity boundary integral equation approach to solve fourth-order time-fractional partial differential equations

&
Pages 2066-2081 | Received 27 Dec 2015, Accepted 20 Jul 2017, Published online: 31 Aug 2017

References

  • M. Abbaszadeh and A. Mohebbi, A fourth-order compact solution of the two-dimensional modified anomalous fractional sub-diffusion equation with a nonlinear source term, Comput. Math. Appl. 66 (2013), pp. 1345–1359. doi: 10.1016/j.camwa.2013.08.010
  • O.P. Agrawal, A general solution for a fourth-order fractional diffusion-wave equation defined in a bounded domain, Comput. Struct. 79 (2001), pp. 1497–1501. doi: 10.1016/S0045-7949(01)00026-8
  • W.T. Ang, A Beginner's Course in Boundary Element Methods, Universal Publishers, Boca Raton, FL, 2007.
  • W.T. Ang and K.C. Ang, A dual reciprocity boundary element solution of a generalized nonlinear Schrödinger equation, Numer. Methods Partial Differential Equations 20 (2004), pp. 843–854. doi: 10.1002/num.20011
  • C.A. Brebbia and D. Nardini, Dynamic analysis in solid mechanics by an alternative boundary element procedure, Int. J. Soil. Dyn. Earthquake. Eng. 2 (1983), pp. 228–233. doi: 10.1016/0261-7277(83)90040-2
  • C.A. Brebbia and S. Walker, The Boundeary Element Techniques in Engineering, Newnes-Butterworths, London, 1980.
  • M. Dehghan and A. Ghesmati, Solution of the second-order one-dimensional hyperbolic telegraph equation by using the dual reciprocity boundary integral equation (DRBIE) method, Eng. Anal. Bound. Elem. 34 (2010), pp. 51–59. doi: 10.1016/j.enganabound.2009.07.002
  • M. Dehghan and D. Mirzaei, The boundary integral approach for numerical solution of the one-dimensional Sine–Gordon equation, Numer. Methods Partial Differential Equations 24 (2008), pp. 1405–1415. doi: 10.1002/num.20325
  • M. Dehghan and M. Safarpoor, The dual reciprocity boundary elements method for the linear and nonlinear two-dimensional time-fractional partial differential equations, Math. Methods Appl. Sci. 39 (2016), pp. 3979–3995. doi: 10.1002/mma.3839
  • M. Dehghan and M. Safarpoor, The dual reciprocity boundary integral equation technique to solve a class of the linear and nonlinear fractional partial differential equations, Math. Methods Appl. Sci. 39 (2016), pp. 2461–2476. doi: 10.1002/mma.3707
  • M. Dehghan and M. Shirzadi, The modified dual reciprocity boundary elements method and its application for solving stochastic partial differential equations, Eng. Anal. Bound. Elem. 58 (2015), pp. 99–111. doi: 10.1016/j.enganabound.2015.03.013
  • M. Dehghan and M. Shirzadi, A meshless method based on the dual reciprocity method for one-dimensional stochastic partial differential equations, Numer. Methods Partial Differential Equations 32 (2016), pp. 292–306. doi: 10.1002/num.21995
  • M. Dehghan, J. Manafian, and A. Saadatmandi, Solving nonlinear fractional partial differential equations using the homotopy analysis method, Numer. Methods Partial Differential Equations 26 (2010), pp. 448–479.
  • M. Dehghan, M. Safarpoor, and M. Abbaszadeh, Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations, J. Comput. Appl. Math. 290 (2015), pp. 174–195. doi: 10.1016/j.cam.2015.04.037
  • K. Diethelm and N.J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl. 265 (2002), pp. 229–248. doi: 10.1006/jmaa.2000.7194
  • A. El-Ajou, O.A. Arqub, S. Momani, D. Baleanu, and A. Alsaedi, A novel expansion iterative method for solving linear partial differential equations of fractional order, Appl. Math. Comput. 257 (2015), pp. 119–133.
  • A. Golbabai and K. Sayevand, Fractional calculus – a new approach to the analysis of generalized fourth-order diffusion-wave equations, Comput. Math. Appl. 61 (2011), pp. 2227–2231. doi: 10.1016/j.camwa.2010.09.022
  • X. Hu and L. Zhang, A compact finite difference scheme for the fourth-order fractional diffusion-wave system, Comput. Phys. Comm. 182 (2011), pp. 1645–1650. doi: 10.1016/j.cpc.2011.04.013
  • X. Hu and L. Zhang, On finite difference methods for fourth-order fractional diffusion-wave and subdiffusion systems, Appl. Math. Comput. 218 (2012), pp. 5019–5034.
  • J.T. Katsikadelis, Boundary Elements Methods, Theory and Application, Elsevier, Athens, 2002.
  • J.T. Katsikadelis, The fractional diffusion-wave equation in bounded inhomogeneous anisotropic media. An AEM solution, Recent Advances in BEM, Dordrecht, Netherlands, 2009, pp. 255–276.
  • J.T. Katsikadelis, The BEM for numerical solution of partial fractional differential equations, Comput. Math. Appl. 62 (2011), pp. 891–901. doi: 10.1016/j.camwa.2011.04.001
  • N.A. Khan, N.U. Khan, M. Ayaz, and A. Mahmood, Analytical methods for solving the time-fractional Swift–Hohenberg (S-H) equation, Comput. Math. Appl. 61 (2011), pp. 2182–2185. doi: 10.1016/j.camwa.2010.09.009
  • C.P. Li and F. Zeng, Numerical Methods for Fractional Calculus, Chapman and Hall/CRC, New York, 2015.
  • F. Liu, S. Shen, V. Anh, and I. Turner, Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation, ANZIAM J. 46 (2005), pp. 488–504. doi: 10.21914/anziamj.v46i0.973
  • F. Liu, P. Zhuang, V. Anh, I. Turner, and K. Burrage, Stability and convergence of the difference methods for the space-time fractional advection–diffusion equation, J. Appl. Math. Comput. 191 (2007), pp. 12–20. doi: 10.1016/j.amc.2006.08.162
  • F. Liu, P. Zhuang, and K. Burrage, Numerical methods and analysis for a class of fractional advection–dispersion models, Comput. Math. Appl. 64 (2012), pp. 2990–3007. doi: 10.1016/j.camwa.2012.01.020
  • Y. Liu, Z. Fang, H. Li, and S. He, A mixed finite element method for a time-fractional fourth-order partial differential equation, Appl. Math. Comput. 243 (2014), pp. 703–717.
  • B. Lombard and J.-F. Mercier, Numerical modeling of nonlinear acoustic waves in a tube connected with Helmholtz resonators, J. Comput. Phys. 259 (2014), pp. 421–443. doi: 10.1016/j.jcp.2013.11.036
  • K.S. Miller and B. Ross, An Introduction the Fractional Calculus and Fractional Differential Equations, Academic Press, New York and London, 1974.
  • A. Mohebbi and M. Abbaszadeh, Compact finite difference scheme for solution of time fractional advection–dispersion equation, Numer. Algorithms 63 (2013), pp. 431–452. doi: 10.1007/s11075-012-9631-5
  • S. Momani and A. Yildirim, Analytical approximate solutions of the fractional convection–diffusion equation with nonlinear source term by He's homotopy perturbation method, Int. J. Comput. Methods 87 (2010), pp. 1057–1065. doi: 10.1080/00207160903023581
  • K.B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York and London, 1974.
  • L.A. Peletier and V. Rottschäfer, Pattern selection of solutions of the Swift–Hohenberg equation, Phys. D 194 (2004), pp. 95–126. doi: 10.1016/j.physd.2004.01.043
  • I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  • P.A. Ramachandran, Boundary Element Methods in Transport Phenomena (Computational Engineering), Computational Mechanics Publications, Southampton, 1994.
  • J. Ren, Z.-Z. Sun, and X. Zhao, Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions, J. Comput. Phys. 232 (2013), pp. 456–467. doi: 10.1016/j.jcp.2012.08.026
  • S.G. Samko, A.A. Kilbas, and O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Amsterdam, 1993.
  • A. Shirzadi, L. Ling, and S. Abbasbandy, Meshless simulations of the two-dimensional fractional–time convection–diffusion–reaction equations, Eng. Anal. Bound. Elem. 36 (2012), pp. 1522–1527. doi: 10.1016/j.enganabound.2012.05.005
  • A.C. Sparavigna and P. Milligan, Using fractional differentiation in astronomy, preprint (2009). Available at arXiv:0910.4243.
  • V. Srivastava and K.N. Rai, A multi-term fractional diffusion equation for oxygen delivery through a capillary to tissues, Math. Comput. Model. 51 (2010), pp. 616–624. doi: 10.1016/j.mcm.2009.11.002
  • Z.-Z. Sun and X. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math. 56 (2006), pp. 193–209. doi: 10.1016/j.apnum.2005.03.003
  • C. Tadjeran, M.M. Meerschaert, and H.-P. Scheffler, A second-order accurate numerical approximation for the fractional diffusion equation, J. Comput. Phys. 213 (2006), pp. 205–213. doi: 10.1016/j.jcp.2005.08.008
  • M. Tezer-Sezgin and S.H. Aydin, Solution of magnetohydrodynamic flow problems using the boundary element method, Eng. Anal. Bound. Elem. 30 (2006), pp. 411–418. doi: 10.1016/j.enganabound.2005.12.001
  • M. Tezer-Sezgin and C. Bozkaya, The boundary element solution of the magnetohydrodynamic flow in an infinite region, J. Comput. Appl. Math. 225 (2009), pp. 510–521. doi: 10.1016/j.cam.2008.08.016
  • K. Vishal, S. Kumar, and S. Das, Application of homotopy analysis method for fractional Swift–Hohenberg equation-Revisited, Appl. Math. Model. 36 (2012), pp. 3630–3637. doi: 10.1016/j.apm.2011.10.001
  • S. Vong and Z. Wang, A high-order compact scheme for the nonlinear fractional Klein–Gordon equation, Numer. Methods Partial Differential Equations 31 (2015), pp. 706–722. doi: 10.1002/num.21912
  • L. Wei and Y. He, Analysis of a fully discrete local discontinuous Galerkin method for time–fractional fourth-order problems, Appl. Math. Model. 38 (2014), pp. 1511–1522. doi: 10.1016/j.apm.2013.07.040
  • S.B. Yuste and L. Acedo, An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations, SIAM J. Numer. Anal. 42(5) (2005), pp. 1862–1874. doi: 10.1137/030602666
  • P. Zhuang, F. Liu, V. Anh, and I. Turner, New solution and analytical techniques of the implicit numerical methods for the anomalous sub-diffusion equation, SIAM J. Numer. Anal. 46 (2008), pp. 1079–1095. doi: 10.1137/060673114

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.