164
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Unified way for computing dynamics of Bose–Einstein condensates and degenerate Fermi gases

, , , &
Pages 2143-2161 | Received 14 Mar 2017, Accepted 20 Jul 2017, Published online: 06 Sep 2017

References

  • S.K. Adhikari, Fermionic bright soliton in a Boson–Fermion mixture, Phys. Rev. A 72 (2005), p. 053608.
  • S.K. Adhikari, Nonlinear Schrödinger equation for a superfluid Fermi gas in the BCS-BEC crossover, Phys. Rev. A 77 (2008), p. 045602.
  • M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, and E.A. Cornell, Observation of Bose–Einstein condensation in a dilute atomic vapor, Science 269 (1995), pp. 198–201. doi: 10.1126/science.269.5221.198
  • X. Antoine, W. Bao, and C. Besse, Computational methods for the dynamics of the nonlinear Schrödinger/gross-Pitaevskii equations, Comput. Phys. Commun. 184 (2013), pp. 2621–2633. doi: 10.1016/j.cpc.2013.07.012
  • J.A. Ball, J.A. Wheeler, and E.L. Fireman, Photoabsorption and charge oscillation of the Thomas–Fermi atom, Rev. Modern Phys. 45 (1973), pp. 333–352. doi: 10.1103/RevModPhys.45.333
  • A.D. Bandrauk and H. Shen, Higher order exponential split operator method for solving time-dependent Schrödinger equations, Canad. J. Chem. 70 (1992), pp. 555–559. doi: 10.1139/v92-078
  • W. Bao and Y. Cai, Mathematical theory and numerical methods for Bose–Einstein condensation, Kinet. Relat. Mod. 6 (2013), pp. 1–135.
  • W. Bao and Y. Zhang, Dynamical laws of the coupled gross-Pitaevskii equations for Spin-1 Bose–Einstein condensates, Methods Appl. Anal. 17 (2010), pp. 49–80.
  • W. Bao, Y. Cai, and H. Wang, Efficient numerical methods for computing ground states and dynamics of dipolar Bose–Einstein condensates, J. Comput. Phys. 229 (2010), pp. 7874–7892. doi: 10.1016/j.jcp.2010.07.001
  • W. Bao, D. Jaksch, and P.A. Markowich, Numerical solution of the gross–Pitaevskii equation for Bose–Einstein condensation, J. Comput. Phys. 187 (2003), pp. 318–342. doi: 10.1016/S0021-9991(03)00102-5
  • W. Bao, Q. Tang, and Y. Zhang, Accurate and efficient numerical methods for computing ground states and dynamics of dipolar Bose–Einstein condensates via the nonuniform FFT, Commun. Comput. 19 (2016), pp. 1141–1166. doi: 10.4208/cicp.scpde14.37s
  • M.D. Barret, J.A. Sauer, and M.S. Chapman, All-optical formation of an atomic Bose–Einstein condensate, Phys. Rev. Lett. 87 (2001), p. 010404.
  • C.C. Bradley, C.A. Sackett, and R.G. Hulet, Bose–Einstein condensation of lithium: Observation of limited condensate number, Phys. Rev. Lett. 78 (1997), pp. 985–989. doi: 10.1103/PhysRevLett.78.985
  • C.C. Bradley, C.A. Sackett, J.J. Tollett, and R.G. Hulet, Evidence of Bose–Einstein condensation in an atomic gas with attractive interactions, Phys. Rev. Lett. 75 (1995), pp. 1687–1690. doi: 10.1103/PhysRevLett.75.1687
  • M.L. Chiofalo, S. Succi, and M.P. Tosi, Ground state of trapped interacting Bose–Einstein condensates by an explicit imaginary-time algorithm, Phys. Rev. E 62 (2000), pp. 7438–7444. doi: 10.1103/PhysRevE.62.7438
  • F. Dalfovo, S. Giorgini, L.P. Pitaevskii, and S. Stringari, Theory of Bose–Einstein condensation in trapped gases, Rev. Mod. Phys. 71 (1999), pp. 463–512. doi: 10.1103/RevModPhys.71.463
  • K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, and W. Ketterle, Bose–Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett. 75 (1995), pp. 3969–3973. doi: 10.1103/PhysRevLett.75.3969
  • B. DeMarco and D.S. Jin, Onset of Fermi degeneracy in a trapped atomic gas, Science 285 (1999), pp. 1703–1706. doi: 10.1126/science.285.5434.1703
  • M. Edwards, R.J. Dodd, and C.W. Clark, Zero-temperature, mean-field theory of atomic Bose–Einstein condensates, J. Res. Natl. Inst. Stand. Technol. 101 (1996), p. 553. doi: 10.6028/jres.101.055
  • A. Einstein and W.J. de Haas, Experimenteller Nachweis der Ampèreschen Molekularströme, Verh. Dtsch. Phys. Ges. 17 (1915), p. 152.
  • M.D. Feit, J.A. Fleck Jr., and A. Steiger, Solution of the Schrödinger equation by a spectral method, J. Comput. Phys. 47 (1982), pp. 412–433. doi: 10.1016/0021-9991(82)90091-2
  • E. Fermi, Un metodo statistico per la determinazione di alcune prioretà dell átome, Rend. Acad. Lincei 6 (1927), p. 602.
  • Furihata and T. Matsuo, Discrete Variational Derivative Method, CRC Press Taylor & Francis Group, London, 2011.
  • K. Gawryluk, M. Brewczyk, K. Bongs, and M. Gajda, Resonant Einstein–de Haas effect in a rubidium condensate, Phys. Rev. Lett. 99 (2007), p. 130401. doi: 10.1103/PhysRevLett.99.130401
  • K. Garwyluk, M. Brewczyk, M. Gajda, and K. Rza̧żewski, Coherence properties of spinor condensates at finite temperatures, Phys. Rev. A 76 (2007), p. 013616.
  • K. Gawryluk, K. Bongs, and M. Brewczyk, How to observe dipolar effects in Spinor Bose–Einstein condensates, Phys. Rev. Lett. 106 (2011), p. 140403. doi: 10.1103/PhysRevLett.106.140403
  • K. Góral and L. Santos, Ground state and elementary excitations of single and binary Bose–Einstein condensates of trapped dipolar gases, Phys. Rev. A 66 (2002), p. 023613.
  • K. Góral, K. Rza̧żewski, and T. Pfau, Bose–Einstein condensation with magnetic dipole–dipole forces, Phys. Rev. A 61 (2000), p. 051601(R). doi: 10.1103/PhysRevA.61.051601
  • L. Greengard, S. Jiang, and W. Bao, Fast and accurate evaluation of nonlocal Coulomb and dipole–dipole interactions via the nonuniform FFT, SIAM J. Sci. Comput. 36 (2014), pp. B777–B794. doi: 10.1137/130945582
  • E.P. Gross, Structure of a quantized vortex in boson systems, Nuovo Cimento 20 (1961), pp. 454–477. doi: 10.1007/BF02731494
  • E.P. Gross, Hydrodynamics of a superfluid condensate, J. Math. Phys. 4 (1963), pp. 195–207. doi: 10.1063/1.1703944
  • E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration, Springer-Verlag, Berlin-Heidelberg-New York, 2002.
  • T.-L. Ho, Spinor Bose condensates in optical traps, Phys. Rev. Lett. 81 (1998), pp. 742–745. doi: 10.1103/PhysRevLett.81.742
  • T. Karpiuk, M. Brewczyk, Ł. Dobrek, M.A. Baranov, M. Lewenstein, and K. Rza̧żewski, Optical generation of solitonlike pulses in a single-component gas of neutral fermionic atoms, Phys. Rev. A 66 (2002), p. 023612. doi: 10.1103/PhysRevA.66.023612
  • T. Karpiuk, M. Brewczyk, and K. Rza̧żewski, Ground state of two-component degenerate fermionic gases, Phys. Rev. A 69 (2004), p. 043603. doi: 10.1103/PhysRevA.69.043603
  • T. Karpiuk, M. Brewczyk, M. Gajda, and K. Rza̧żewski, On the stability of Bose–Fermi mixtures, J. Phys. B 38 (2005), pp. L215–L221. doi: 10.1088/0953-4075/38/13/L02
  • T. Karpiuk, P. Grochowski, M. Brewczyk, and K. Rza̧żewski, Unified Description of Dynamics of a Repulsive Two-component Fermi Gas. Available at http://arxiv.org/abs/1704.07707.
  • Y. Kawaguchi, H. Saito, and M. Ueda, Einstein–de Haas effect in dipolar Bose–Einstein condensates, Phys. Rev. Lett. 96 (2006), p. 080405. doi: 10.1103/PhysRevLett.96.080405
  • E.G.M. van Kempen, S.J.J.M.F. Kokkelmans, D.J. Heinzen, and B.J. Varhaar, Interisotope determination of ultracold rubidium interactions from three high-precision experiments, Phys. Rev. Lett. 88 (2002), p. 093201. doi: 10.1103/PhysRevLett.88.093201
  • D.A. Kirzhnits, Quantum corrections to the Thomas-Fermi equation, Sov. Phys. JETP 5 (1957), p. 64.
  • R. KishorKumar, L.E. Young-S., D. Vudragović, A. Balaž, P. Muruganandam, and S.K. Adhikari, Fortran and C programs for the time-dependent dipolar gross-Pitaevskii equation in an anisotropic trap, Comput. Phys. Commun. 195 (2015), pp. 117–128. doi: 10.1016/j.cpc.2015.03.024
  • C. Leforestier, R.H. Bisseling, C. Cerjan, M.D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, A comparison of different propagation schemes for the time dependent Schrödinger equation, J. Comput. Phys. 94 (1991), pp. 59–80. doi: 10.1016/0021-9991(91)90137-A
  • A.J. Leggett, Bose–Einstein condensation in the alkali gases: Some fundamental concepts, Rev. Mod. Phys. 73 (2001), pp. 307–356. doi: 10.1103/RevModPhys.73.307
  • C. Lubich, From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis, European Mathematical Society, Zurich, 2008.
  • E. Madelung, Quantentheorie in hydrodynamischer form, Z. Phys. 40 (1927), pp. 322–326. doi: 10.1007/BF01400372
  • P. Muruganandam and S.K. Adhikari, Fortran programs for the time-dependent gross-Pitaevskii equation in a fully anisotropic trap, Comput. Phys. Commun. 180 (2009), pp. 1888–1912. doi: 10.1016/j.cpc.2009.04.015
  • T. Ohmi and K. Machida, Bose–Einstein condensation with internal degrees of freedom in alkali atom gases, J. Phys. Soc. Jpn. 67 (1998), pp. 1822–1825. doi: 10.1143/JPSJ.67.1822
  • C.J. Pethick and H. Smith, Bose–Einstein Condensation in Dilute Gases, Cambridge University Press, Cambridge, 2002.
  • L.P. Pitaevskii, Vortex lines in an imperfect Bose gas, Zh. Eksp. Teor. Fiz. 40 (1961), p. 646.
  • L.P. Pitaevskii, Vortex lines in an imperfect Bose gas, Sov. Phys.-JETP 13 (1961), p. 451.
  • L. Salasnich, S.K. Adhikari, and F. Toigo, Self-bound droplet of Bose and Fermi atoms in one dimension: Collective properties in mean-field and Tonks-Girardeau regimes, Phys. Rev. A 75 (2007), p. 023616.
  • C. Sanner, E.J. Su, W. Huang, A. Keshet, J. Gillen, and W. Ketterle, Correlations and pair formation in a repulsively interacting fermi gas, Phys. Rev. Lett. 108 (2012), p. 240404. doi: 10.1103/PhysRevLett.108.240404
  • L. Santos, G.V. Shlyapnikov, P. Zoller, and M. Lewenstein, Bose–Einstein condensation in trapped dipolar gases, Phys. Rev. Lett. 85 (2000), pp. 1791–1794. doi: 10.1103/PhysRevLett.85.1791
  • T. Świsłocki, T. Sowiński, J. Pietraszewicz, M. Brewczyk, M. Lewenstein, J. Zakrzewski, and M. Gajda, Tunable dipolar resonances and Einstein-de Haas effect in a Rb87-atom condensate, Phys. Rev. A 83 (2011), p. 063617. doi: 10.1103/PhysRevA.83.063617
  • L.H. Thomas, The calculation of atomic fields, Proc. Cambridge Philos. Soc. 23 (1926), p. 542. doi: 10.1017/S0305004100011683
  • M.-I. Trappe, P. Grochowski, M. Brewczyk, and K. Rza̧żewski, Ground-state densities of repulsive two-component Fermi gases, Phys. Rev. A 93 (2016), p. 023612.
  • M. Ueda and Y. Kawaguchi, Spinor Bose–Einstein condensates, Phys. Rep. 520 (2012), pp. 253–381. doi: 10.1016/j.physrep.2012.07.005
  • G. Valtolina, F. Scazza, A. Amico, A. Burchianti, A. Recati, T. Enss, M. Inguscio, M. Zaccanti, and G. Roati, preprint (2016). Available at arXiv:1605.07850.
  • D. Vudragović, I. Vidanović, A. Balaž, P. Muruganandam, and S.K. Adhikari, C programs for solving the time-dependent Gross–Pitaevskii equation in a fully anisotropic trap, Comput. Phys. Commun. 183 (2012), pp. 2021–2025. doi: 10.1016/j.cpc.2012.03.022
  • H. Wang, A time-splitting spectral method for computing dynamics of spinor F=1 Bose–Einstein condensates, Int. J. Comput. Math. 84 (2007), pp. 925–944. doi: 10.1080/00207160701458369
  • H. Wang, Numerical solutions of two-dimensional unsteady convection–diffusion problems using modified bi-cubic B-spline finite elements, Int. J. Comput. Math. 94 (2017), p. 1. doi: 10.1080/00207160.2015.1085976
  • C.F. Weizsäcker, Zur Theorie der Kernmassen, Z. Phys. 96 (1935), pp. 431–458. doi: 10.1007/BF01337700
  • S. Yi and L. You, Trapped atomic condensates with anisotropic interactions, Phys. Rev. A 61 (2000), p. 041604. doi: 10.1103/PhysRevA.61.041604
  • Available at http://fftw.org/.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.