246
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

A modified exponential method that preserves structural properties of the solutions of the Burgers–Huxley equation

ORCID Icon
Pages 3-19 | Received 03 Jan 2017, Accepted 21 Jun 2017, Published online: 19 Sep 2017

References

  • D. Ağırseven and ÖzişT., An analytical study for Fisher type equations by using homotopy perturbation method, Comput. Math. Appl. 60 (2010), pp. 602–609. doi: 10.1016/j.camwa.2010.05.006
  • K. Baba and M. Tabata, On a conservation upwind finite element scheme for convective diffusion equations, RAIRO-Analyse Numérique 15 (1981), pp. 3–25. doi: 10.1051/m2an/1981150100031
  • A.R. Bahadır, Exponential finite-difference method applied to Korteweg–de Vries equation for small times, Appl. Math. Comput. 160 (2005), pp. 675–682.
  • M.C. Bhattacharya, An explicit conditionally stable finite difference equation for heat conduction problems, Int. J. Numer. Methods. Eng. 21 (1985), pp. 239–265. doi: 10.1002/nme.1620210205
  • M. Bhattacharya, A new improved finite difference equation for heat transfer during transient change, Appl. Math. Model. 10 (1986), pp. 68–70. doi: 10.1016/0307-904X(86)90012-0
  • M.C. Bhattacharya, Finite-difference solutions of partial differential equations, Comm. Appl. Numer. Methods 6 (1990), pp. 173–184. doi: 10.1002/cnm.1630060303
  • D. Boffi, N. Cavallini, F. Gardini, and L. Gastaldi, Local mass conservation of Stokes finite elements, J. Sci. Comput. 52 (2012), pp. 383–400. doi: 10.1007/s10915-011-9549-4
  • X. Deng, Travelling wave solutions for the generalized Burgers–Huxley equation, Appl. Math. Comput. 204 (2008), pp. 733–737.
  • V.J. Ervin, J.E. Macías-Díaz, and J. Ruiz-Ramírez, A positive and bounded finite element approximation of the generalized Burgers–Huxley equation, J. Math. Anal. Appl. 424 (2015), pp. 1143–1160. doi: 10.1016/j.jmaa.2014.11.047
  • R.A. Fisher, The wave of advance of advantageous genes, Ann. Eugen. 7 (1937), pp. 355–369. doi: 10.1111/j.1469-1809.1937.tb02153.x
  • R. FitzHugh, Mathematical models of threshold phenomena in the nerve membrane, Bull. Math. Biophys. 17 (1955), pp. 257–278. doi: 10.1007/BF02477753
  • A. Friedman, Partial Differential Equations of Parabolic Type, Prentice Hall, Inc., Englewood Cliffs, NJ, 1964.
  • D. Furihata, Finite-difference schemes for nonlinear wave equation that inherit energy conservation property, J. Comput. Appl. Math. 134 (2001), pp. 37–57. doi: 10.1016/S0377-0427(00)00527-6
  • A. Gupta and S.S. Ray, Comparison between homotopy perturbation method and optimal homotopy asymptotic method for the soliton solutions of Boussinesq–Burger equations, Comput. Fluids 103 (2014), pp. 34–41. doi: 10.1016/j.compfluid.2014.07.008
  • A. Gupta and S.S. Ray, On the solutions of fractional Burgers–Fisher and generalized Fisher equations using two reliable methods, Int. J. Math. Math. Sci. 2014 (2014), Article ID 682910, 16 pages. doi: 10.1155/2014/682910
  • A. Gupta and S.S. Ray, Traveling wave solution of fractional KdV-Burger–Kuramoto equation describing nonlinear physical phenomena, AIP. Adv. 4 (2014), p. 097120. doi: 10.1063/1.4895910
  • R.F. Handschuh and T.G. Keith Jr, Applications of an exponential finite-difference technique, Numer. Heat Transfer 22 (1992), pp. 363–378. doi: 10.1080/10407789208944773
  • B. Inan and A.R. Bahadır, An explicit exponential finite difference method for the Burgers equation, Eur. Internat. J. Sci. Technol. 2 (2013), pp. 61–72.
  • B. Inan, A.R. Bahadir, Numerical solution of the one-dimensional Burgers equation: Implicit and fully implicit exponential finite difference methods, Pramana 81 (2013), pp. 547–556. doi: 10.1007/s12043-013-0599-z
  • B. Inan and A.R. Bahadir, A numerical solution of the Burgers equation using a Crank–Nicolson exponential finite difference method, J. Math. Comput. Sci. 4 (2014), pp. 849–860. doi: 10.9734/BJMCS/2014/7442
  • A. Kolmogorov, I. Petrovsky, and N. Piscounov, Étude de l'équations de la diffusion avec croissance de la quantité de matière et son application a un problème biologique, Bull. Univ. Moskou, Ser. Internat. 1A (1937), pp. 1–25.
  • J.E. Macías-Díaz, A. Gallegos, and H. Vargas-Rodríguez, A modified Bhattacharya exponential method to approximate positive and bounded solutions of the Burgers–Fisher equation, J. Comput. Appl. Math. (2016). Available at http://dx.doi.org/10.1016/j.cam.2016.07.026.
  • J.E. Macías-Díaz and A. Puri, On some explicit non-standard methods to approximate nonnegative solutions of a weakly hyperbolic equation with logistic nonlinearity, Int. J. Comput. Math. 88 (2011), pp. 3308–3323. doi: 10.1080/00207160.2011.592939
  • J.E. Macías-Díaz, J. Ruiz-Ramírez, and J. Villa, The numerical solution of a generalized Burgers–Huxley equation through a conditionally bounded and symmetry-preserving method, Comput. Math. Appl. 61 (2011), pp. 3330–3342. doi: 10.1016/j.camwa.2011.04.022
  • T. Matsuo and D. Furihata, Dissipative or conservative finite-difference schemes for complex-valued nonlinear partial differential equations, J. Comput. Phys. 171 (2001), pp. 425–447. doi: 10.1006/jcph.2001.6775
  • J. Nagumo, S. Arimoto, and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. IRE 50 (1962), pp. 2061–2070. doi: 10.1109/JRPROC.1962.288235
  • A.C. Newell and J.A. Whitehead, Stability of stationary periodic structures for weakly supercritical convection and related problems, J. Fluid. Mech. 38 (1969), pp. 279–303. doi: 10.1017/S0022112069000176
  • S.S. Ray and A. Gupta, On the solution of Burgers-Huxley and Huxley equation using wavelet collocation method, Comput. Model. Eng. Sci. 91 (2013), pp. 409–424.
  • S.S. Ray and A. Gupta, Comparative analysis of variational iteration method and Haar wavelet method for the numerical solutions of Burgers–Huxley and Huxley equations, J. Math. Chem. 52 (2014), pp. 1066–1080. doi: 10.1007/s10910-014-0327-z
  • S.S. Ray and A. Gupta, Application of novel schemes based on Haar wavelet collocation method for numerical simulations of Burger and Boussinesq–Burger equations, Appl. Math. Inform. Sci. 10 (2016), pp. 1513–1524. doi: 10.18576/amis/100429
  • J. Ruiz-Ramírez and J.E. Macías-Díaz, A finite-difference scheme to approximate non-negative and bounded solutions of a FitzHugh–Nagumo equation, Int. J. Comput. Math. 88 (2011), pp. 3186–3201. doi: 10.1080/00207160.2011.579964
  • L.A. Segel, Distant side-walls cause slow amplitude modulation of cellular convection, J. Fluid. Mech. 38 (1969), pp. 203–224. doi: 10.1017/S0022112069000127
  • J. Shi and S.H. Wang, Exact multiplicity of boundary blow-up solutions for a bistable problem, Comput. Math. Appl. 54 (2007), pp. 1285–1292. doi: 10.1016/j.camwa.2007.04.017
  • S. Tomasiello, Stability and accuracy of the iterative differential quadrature method, Int. J. Numer. Methods Eng. 58 (2003), pp. 1277–1296. doi: 10.1002/nme.815
  • S. Tomasiello, Numerical solutions of the Burgers–Huxley equation by the IDQ method, Int. J. Comput. Math. 87 (2010), pp. 129–140. doi: 10.1080/00207160801968762
  • S. Tomasiello, A new DQ-based method and its application to the stability of columns, Appl. Math. Comput. 226 (2014), pp. 145–156.
  • X.Y. Wang, Exact and explicit solitary wave solutions for the generalised Fisher equation, Phys. Lett. A 131 (1988), pp. 277–279. doi: 10.1016/0375-9601(88)90027-8
  • X.Y. Wang, Z.S. Zhu, and Y.K. Lu, Solitary wave solutions of the generalised Burgers-Huxley equation, J. Phys. A Math. Gen. 23 (1990), pp. 271–200. doi: 10.1088/0305-4470/23/3/011
  • G.c. Wu, Uniformly constructing soliton solutions and periodic solutions to Burgers–Fisher equation, Comput. Math. Appl. 58 (2009), pp. 2355–2357. doi: 10.1016/j.camwa.2009.03.023

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.