521
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

The finite difference method for Caputo-type parabolic equation with fractional Laplacian: more than one space dimension

, &
Pages 1114-1130 | Received 28 Mar 2017, Accepted 09 Aug 2017, Published online: 05 Oct 2017

References

  • A. Bonito and J.E. Pasciak, Numerical approximation of fractional powers of elliptic operators, Math. Comput. 84(295) (2015), pp. 2083–2110. doi: 10.1090/S0025-5718-2015-02937-8
  • C. Braendle, E. Colorado, A.D. Pablo, and U. Snchez, A concave–convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A. 143(1) (2013), pp. 39–71. doi: 10.1017/S0308210511000175
  • X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians I: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire. 31(1) (2014), pp. 23–53. doi: 10.1016/j.anihpc.2013.02.001
  • X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians II: Existence, uniqueness, and qualitative properties of solutions, Trans. Amer. Math. Soc. 367(2) (2015), pp. 911–941. doi: 10.1090/S0002-9947-2014-05906-0
  • X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math. 224(5) (2010), pp. 2052–2093. doi: 10.1016/j.aim.2010.01.025
  • L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partaial Differential Equations 32(7–9) (2007), pp. 1245–1260. doi: 10.1080/03605300600987306
  • A. Capella, J. Davila, L. Dupaigne, and Y. Sire, Regularity of radial extremal solutions for some non-local semilinear equations, Comm. Partaial Differential Equations 36(8) (2011), pp. 1353–1384. doi: 10.1080/03605302.2011.562954
  • R.L. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in R, Acta. Math. 210(2) (2013), pp. 261–318. doi: 10.1007/s11511-013-0095-9
  • Y. Hu, C.P. Li, and H.F. Li, The finite difference method for Caputo-type parabolic equation with fractional Laplacian: One-dimension case, Chaos Solitons Fractals 102 (2017), pp. 319–326. doi: 10.1016/j.chaos.2017.03.038
  • C.P. Li, Q. Yi, and A. Chen, Finite difference methods with non-uniform meshes for nonlinear fractional differential equations, J. Comput. Phys. 316 (2016), pp. 614–631. doi: 10.1016/j.jcp.2016.04.039
  • C.P. Li and F.H. Zeng, The finite difference methods for fractional ordinary differential equations, Numer. Funct. Anal. Optim. 34(2) (2013), pp. 149–179. doi: 10.1080/01630563.2012.706673
  • C.P. Li and F.H. Zeng, Numerical Methods for Fractional Calculus, Chapman and Hall/CRC, Boca Raton, 2015.
  • F. Liu, P. Zhuang, and Q. Liu, Numerical Methods of Fractional Partial Differential Equations and Applications, Science Press, China (in Chinese), 2015.
  • E.D. Nezza, G. Palatucci, and E. Valdinoci, Hitchhikers guide to the fractional Sobolev spaces, Bull. Sci. Math. 136(5) (2012), pp. 521–573. doi: 10.1016/j.bulsci.2011.12.004
  • R.H. Nochetto, E. Otarola, and A.J. Salgado, A PDE approach to fractional diffusion in general domains: A priori error analysis, Found. Comput. Math. 15(3) (2015), pp. 733–791. doi: 10.1007/s10208-014-9208-x
  • R.H. Nochetto, E. Otarola, and A.J. Salgado, A PDE approach to space-time fractional parabolic problems, SIAM J. Numer. Anal. 54(2) (2016), pp. 848–873. doi: 10.1137/14096308X
  • K.B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974, renewed 2006.
  • I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  • F.D. Teso and J.L. Vázquez, Finite difference method for a general fractional porous medium equation, Math. 51(4) (2013), pp. 615–638.
  • Q. Yang, I. Turner, T. Moroney, and F. Liu, A finite volume scheme with preconditioned Lanczos method for two-dimensional space-fractional reaction-diffusion equations, Appl. Math. Model. 38(15-16) (2014), pp. 3755–3762. doi: 10.1016/j.apm.2014.02.005
  • Q. Yang, I. Turner, F. Liu, and M. Ilis, Novel numerical methods for solving the time-space fractional diffusion equation in 2D, SIAM J. Sci. Comput. 33 (2011), pp. 1159–1180. doi: 10.1137/100800634
  • Q. Yu, F. Liu, I. Turner, and K. Burrage, Numerical investigation of three types of space and time fractional Bloch–Torrey equations in 2D, Cent. Eur. J. Phys. 11(6) (2013), pp. 646–665.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.