333
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Stability and convergence of difference schemes for multi-dimensional parabolic equations with variable coefficients and mixed derivatives

, &
Pages 255-277 | Received 18 Dec 2016, Accepted 23 Jun 2017, Published online: 16 Oct 2017

References

  • U. Arora, S. Karaa, and R.K. Mohanty, A new stable variable mesh method for 1-D non-linear parabolic partial differential equations, Appl. Math. Comput. 181 (2006), pp. 1423–1430.
  • T.D. Aslam, J.B. Bdzil, and D.S. Stewart, Level set methods applied to modeling detonation shock dynamics, J. Comput. Phys. 126 (1996), pp. 390–409. doi: 10.1006/jcph.1996.0145
  • H. Baer and K. Stephan, Heat and Mass Transfer, Springer-Verlag, Berlin, Heidelberg, 2006.
  • D.S. Balsara, D.A. Tilley, and J.C. Howk, Simulating anisotropic thermal conduction in supernova remnants-I. Numerical methods, Mon. Not. R. Astron. Soc. 386 (2008), pp. 627–641. doi: 10.1111/j.1365-2966.2008.13085.x
  • B. Bialecki and R.I. Fernandes, An alternating direction implicit backward differentiation orthogonal spline collocation method for linear variable coefficient parabolic equations, SIAM J. Numer. Anal. 47 (2009), pp. 3429–3450. doi: 10.1137/080739112
  • J.R. Cash, Two new finite difference schemes for parabolic equations, SIAM J. Numer. Anal. 21 (1984), pp. 433–446. doi: 10.1137/0721032
  • M. Ciment, S.H. Leventhal, and B.C. Weinberg, The operator compact implicit method for parabolic equations, J. Comput. Phys. 28 (1978), pp. 135–166. doi: 10.1016/0021-9991(78)90031-1
  • W.Z. Dai and C.D. Chen, The general three level explicit difference schemes for solving parabolic equation with variable coefficients and mixed derivatives, Numer. Math. J. Chin. Univ. 9(3) (1987), pp. 235–242.
  • W. Dai and R. Nassar, A compact finite-difference scheme for solving a one-dimensional heat transport equation at the microscale, J. Comput. Appl. Math. 132 (2001), pp. 431–441. doi: 10.1016/S0377-0427(00)00445-3
  • W. Dai and R. Nassar, Compact ADI method for solving parabolic differential equations, Numer. Methods Partial Differential Equations 18 (2002), pp. 129–142. doi: 10.1002/num.1037
  • B. Düring and C. Heuer, High-order compact schemes for parabolic problems with mixed derivatives in multiple space dimensions, SIAM J. Numer. Anal. 53 (2015), pp. 2113–2134. doi: 10.1137/140974833
  • R.I. Fernandes and G. Fairweather, Analysis of alternating direction collocation methods for parabolic and hyperbolic problems in two space variables, Numer. Methods Partial Differential Equations 9 (1993), pp. 191–211. doi: 10.1002/num.1690090207
  • M. Fournié and S. Karaa, Iterative methods and high-order difference schemes for 2D elliptic problems with mixed derivative, J. Appl. Math. Comput. 22 (2006), pp. 349–363. doi: 10.1007/BF02832060
  • G.H. Gao and Z.Z. Sun, Compact difference schemes for heat equation with Neumann boundary conditions (II), Numer. Methods Partial Differential Equations 29 (2013), pp. 1459–1486. doi: 10.1002/num.21760
  • S. Karaa, An accurate finite difference scheme for 2-D parabolic problems with mixed derivative, Far. East J. Appl. Math. 23 (2006), pp. 287–297.
  • S. Karaa, High-order difference schemes for 2D elliptic and parabolic problems with mixed derivatives, Numer. Methods Partial Differential Equations 23 (2007), pp. 366–378. doi: 10.1002/num.20181
  • S. Karaa, A high-order ADI method for parabolic problems with variable coefficients, Int. J. Comput. Math. 86 (2009), pp. 109–120. doi: 10.1080/00207160802217227
  • S. Karaa and M. Othman, Two-level compact implicit schemes for three-dimensional parabolic problems, Comput. Math. Appl. 58 (2009), pp. 257–263. doi: 10.1016/j.camwa.2009.02.036
  • J. Li, Y. Chen and G. Liu, High-order compact ADI methods for parabolic equations, Comput. Math. Appl. 52 (2006), pp. 1343–1356. doi: 10.1016/j.camwa.2006.11.010
  • H.L. Liao and Z.Z. Sun, Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations, Numer. Methods Partial Differential Equations 26 (2010), pp. 37–60. doi: 10.1002/num.20414
  • P.C. Lin, An explicit difference scheme for solving parabolic equations with mixed derivatives, Numer. Math. J. Chin. Univ. 3 (1983), pp. 281–285.
  • M.S. Ma, W.J. Ma, and X.F. Wang, A compact alternate direct implicit difference method for solving parabolic equation of multi-dimension, Appl. Math. Comput. 212 (2009), pp. 281–286.
  • G.H. Markstein, Non-steady Flame Propagation, Pergamon, MacMillan, New York, 1964.
  • S. McKee, D.P. Wall, and S.K. Wilson, An alternating direction implicit scheme for parabolic equations with mixed derivative and convective terms, J. Comput. Phys. 126 (1996), pp. 64–76. doi: 10.1006/jcph.1996.0120
  • R.K. Mohanty, High accuracy difference schemes for a class of three-space-dimensional singular parabolic equations with variable coefficients, J. Comput. Appl. Math. 89 (1998), pp. 39–51. doi: 10.1016/S0377-0427(97)00223-9
  • A. Mohebbi and M. Dehghan, High-order compact solution of the one-dimensional heat and advection–diffusion equations, Appl. Math. Model. 34 (2010), pp. 3071–3084. doi: 10.1016/j.apm.2010.01.013
  • E. O'Riordan, M.L. Pickett, and G.I. Shishkin, Parameter-uniform finite difference schemes for singularly perturbed parabolic diffusion–convection–reaction problems, Math. Comp. 75 (2006), pp. 1135–1154. doi: 10.1090/S0025-5718-06-01846-1
  • J. Qin, The new alternating direction implicit difference methods for solving three-dimensional parabolic equations, Appl. Math. Model. 34 (2010), pp. 890–897. doi: 10.1016/j.apm.2009.07.006
  • L.I. Rubenstein, The Stefan Problem, American Mathematical Society, Providence, RI, 1971.
  • W.F. Spotz, High-order compact finite difference schemes for computational mechanics, Ph.D. thesis, University of Texas at Austin, Austin, TX, 1995
  • W.F. Spotz and G.F. Carey, High-order compact scheme for the steady stream-function vorticity equations, Internat. J. Numer. Methods Engrg. 38 (1995), pp. 3497–3512. doi: 10.1002/nme.1620382008
  • W.F. Spotz and G.F. Carey, A high-order compact formulation for the 3D Poisson equation, Numer. Methods Partial Differential Equations 12 (1996), pp. 235–243. doi: 10.1002/(SICI)1098-2426(199603)12:2<235::AID-NUM6>3.0.CO;2-R
  • W.F. Spotz and G.F. Carey, Extension of high-order compact schemes to time-dependent problems, Numer. Methods Partial Differential Equations 17 (2001), pp. 657–672. doi: 10.1002/num.1032
  • Z.Z. Sun, An unconditionally stable and O(τ2+h4) order L∞ convergent difference scheme for parabolic equations with variable coefficients, Numer. Methods Partial Differential Equations 17 (2001), pp. 619–631. doi: 10.1002/num.1030
  • P.N. Vabishchevich, Flux-splitting schemes for parabolic equations with mixed derivatives, Comput. Math. Math. Phys. 53 (2013), pp. 1139–1152. doi: 10.1134/S0965542513080137
  • T. Wang and Y.M. Wang, A higher-order compact LOD method and its extrapolations for nonhomogeneous parabolic differential equations, Appl. Math. Comput. 237 (2014), pp. 512–530.
  • L.F. Yukhno, Economic difference scheme for a parabolic equation with a mixed spatial derivative, Comput. Math. Math. Phys. 49 (2009), pp. 1547–1553. doi: 10.1134/S0965542509090097
  • Y. Zhang and D. Shi, Superconvergence of an H1-Galerkin nonconforming mixed finite element method for a parabolic equation, Comput. Math. Appl. 66 (2013), pp. 2362–2375. doi: 10.1016/j.camwa.2013.09.013
  • J. Zhao, W. Dai, and S. Zhang, Fourth-order compact schemes for solving multidimensional heat problems with Neumann boundary conditions, Numer. Methods Partial Differential Equations 24 (2008), pp. 165–178. doi: 10.1002/num.20255
  • H. Zhou, Y.J. Wu, and W.Y. Tian, Extrapolation algorithm of compact ADI approximation for two-dimensional parabolic equation, Appl. Math. Comput. 219 (2012), pp. 2875–2884.
  • M. Zlámal, Finite element methods for parabolic equations, Math. Comput. 28 (1974), pp. 393–404. doi: 10.2307/2005915

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.