133
Views
6
CrossRef citations to date
0
Altmetric
Articles

Using the Manhattan distance for computing the multiobjective Markov chains problem

ORCID Icon &
Pages 2269-2286 | Received 30 Jan 2015, Accepted 25 Apr 2017, Published online: 11 Oct 2017

References

  • A.S. Antipin, An extraproximal method for solving equilibrium programming problems and games, Comput. Math. Math. Phys. 45(11) (2005), pp. 1893–1914.
  • L. Barrett and S. Narayanan, Learning all optimal policies with multiple criteria, Proceedings of the 25th International Conference on Machine Learning (ICML '08), Helsinki, Finland, 2008, pp. 41–47.
  • E. Beltrami, M. Katehakis, and S. Durinovic, Multiobjective Markov decisions in urban modelling, Math. Model. 6 (1985), pp. 333–338. doi: 10.1016/0270-0255(85)90033-8
  • J.B. Clempner, Necessary and sufficient Karush–Kuhn–Tucker conditions for multiobjective markov chains optimality, Automatica 71 (2016), pp. 135–142. doi: 10.1016/j.automatica.2016.04.044
  • J.B. Clempner and A.S. Poznyak, Simple computing of the customer lifetime value: A fixed local-optimal policy approach, J. Syst Sci. Syst. Eng. 23(4) (2014), pp. 439–459. doi: 10.1007/s11518-014-5260-y
  • J.B. Clempner and A.S. Poznyak, Solving the pareto front for nonlinear multiobjective markov chains using the minimum euclidian distance optimization method, Math. Comput. Simul. 119 (2016), pp. 142–160. doi: 10.1016/j.matcom.2015.08.004
  • I. Das and J.E. Dennis, Normal-boundary intersection: An alternate approach for generating pareto-optimal points in multicriteria optimization problems, SIAM J. Control. Optim. 8 (1998), pp. 631–657. doi: 10.1137/S1052623496307510
  • K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, Wiley, New York, NY, 2001.
  • S. A. Deb, A. Pratap, and T. Meyarivan, A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II, in Parallel Problem Solving from Nature PPSN VI. PPSN 2000. Lecture Notes in Computer Science, Vol 1917, M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, JJ. Merelo, and H.-P. Schwefel, eds, Springer, Berlin, Heidelberg, 2000, pp. 849–858.
  • K. Deb, S. Pratap, and A. Meyarivan, A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: Nsga-ii, Proceedings of the Parallel Problem Solving from Nature VI Conference, Springer, Paris, France, 2000, pp. 849–858.
  • M. Dellnitz, O. Schutze, and T. Hestermeyer, Covering pareto sets by multilevel subdivision techniques, J. Optim. Theory. Appl. 124 (2005), pp. 113–155. doi: 10.1007/s10957-004-6468-7
  • T. Erfani and S. Utyuzhnikov, Directed search domain: A method for even generation of the pareto frontier in multi-objective optimization, Eng. Optim. 43(5) (2011), pp. 467–484. doi: 10.1080/0305215X.2010.497185
  • J.E. Fieldsend and S. Singh, A multi-objective algorithm based upon particle swarm optimization, an efficient data structure and turbulence, Proceedings of the 2002 U.K. Workshop on Computational Intelligence, Birmingham, UK, 2002, pp. 37–44.
  • C.M. Fonseca, P.J. Fleming, E. Zitzler, K. Deb, and L. Thiele, (eds.) Second International Conference on Evolutionary Multi-Criterion Optimization (EMO 2003), Faro, Portugal, 2003.
  • Y.B. Germeyer, Introduction to the Theory of Operations Research, Nauka, Moscow, 1971.
  • Y.B. Germeyer, Games with Nonantagonistic Interests, Nauka, Moscow, 1976.
  • I. Giagkiozis and P.J. Fleming, Pareto front estimation for decision making, Evol. Comput. 22(4) (2014), pp. 651–678. doi: 10.1162/EVCO_a_00128
  • H. Ishibuchi, N. Tsukamoto, and Y. Nojima, Evolutionary many-objective optimization: A short review, Proceedings of the IEEE Congress on Evolutionary Computation, IEEE, ed., Hong Kong, China, 2008, pp. 2419–2426.
  • K. Miettinen, Nonlinear Multiobjective Optimization, Vol. 12, Springer-Verlag, Berlin, 1999.
  • S. Mostaghim, Multi-Objective evolutionary algorithms, data structures, convergence and diversity, PhD thesis, University of Paderborn, 2004.
  • V. Pereyra, Fast computation of equispaced pareto manifolds and pareto fronts for multi-objective optimization problems, Math. Comput. Simul. 79(6) (2009), pp. 1935–1947. doi: 10.1016/j.matcom.2007.02.007
  • V. Pereyra, M. Saunders, and J. Castillo, Equispaced pareto front construction for constrained bi-objective optimization, Math. Comput. Model. 57(9–10) (2013), pp. 2122–2131. doi: 10.1016/j.mcm.2010.12.044
  • M. Pirotta, S. Parisi, and M. Restelli, Multi-objective reinforcement learning with continuous pareto frontier approximation, Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, 2015, pp. 2928–2934.
  • A.S. Poznyak, Advance Mathematical Tools for Automatic Control Engineers Vol 2. Deterministic Techniques, Elsevier, Amsterdam, 2009.
  • A.S. Poznyak, K. Najim, and E. Gomez-Ramirez, Self-Learning Control of Finite Markov Chains, Marcel Dekker, New York, 2000.
  • J. Rakowska, R.T. Haftka, and L.T. Watson, Tracing the efficient curve for multi-objective control structure optimization, SIAM J. Control. Optim. 3 (1993), pp. 654–667. doi: 10.1137/0803033
  • W.C. Rheinboldt and J. Burkardt, Pitcon: A program for a locally parametrized continuation process, ACM Trans. Math. Softw. (TOMS) 9 (1983), pp. 236–241. doi: 10.1145/357456.357461
  • D. Roijers, J. Scharpff, M. Spaan, F. Oliehoek, M. De Weerdt, and S. Whiteson, Bounded approximations for linear multi-objective planning under uncertainty, in Proceedings of the Twenty-Fourth International Conference on Automated Planning and Scheduling (ICAPS), S. Chien, M. Do, A. Fern, and W. Ruml (eds.), AAAI Press, Palo Alto, California, 2014, pp. 262–270.
  • D.M. Roijers, P. Vamplew, S. Whiteson, and R. Dazeley, A survey of multi-objective sequential decision-making, J. Artif. Intell. Res. 48 (2013), pp. 67–113.
  • S. Saha, R. Kumar, and G. Baboo, Characterization of graph properties for improved pareto fronts using heuristics and ea for bi-objective graph coloring problem, Appl. Soft. Comput. 13(5) (2013), pp. 2812–2822. doi: 10.1016/j.asoc.2012.06.021
  • K. Tanaka, The closest solution to the shadow minimum of a cooperative dynamic game, Comput. Math. Appl. 18(1–3) (1989), pp. 181–188. doi: 10.1016/0898-1221(89)90135-1
  • A.N. Tikhonov and V.Y. Arsenin, Solution of Ill-Posed Problems, Winston & Sons, Washington, 1977.
  • A.N. Tikhonov, A.V. Goncharsky, V.V. Stepanov, and A.G. Yagola, Numerical Methods for the Solution of Ill-Posed Problems, Springer, Netherlands, 1995.
  • K.K. Trejo, J.B. Clempner, and A.S. Poznyak, Computing the stackelberg/nash equilibria using the extraproximal method: Convergence analysis and implementation details for Markov chains games. Int. J. Appl. Math. Comput. Sci. 25(2) (2015), pp. 337–351. doi: 10.1515/amcs-2015-0026
  • P. Vamplew, R. Dazeley, E. Barker, and A. Kelarev, Constructing stochastic mixture policies for episodic multiobjective reinforcement learning tasks, in AI 2009: Advances in Artificial Intelligence, A. Nicholson and X. Li, eds., Vol. 5866, Lecture Notes in Computer Science, Springer, Berlin, 2009, pp. 340–349.
  • K. Wakuta and K. Togawa, Solution procedures for multi-objective Markov decision processes, Oplimizarion 43 (1998), pp. 29–46.
  • E. Zitzler, J. Knowles, and L. Thiele, Quality assessment of pareto set approximations, in Multiobjective Optimization, J. Branke, K. Deb, K. Miettinen, and R. Słowinski, eds., Vol. 5252, Lecture Notes in Computer Science, Springer, Berlin, 2008, pp. 373–404.
  • E. Zitzler, M. Laumanns, and L. Thiele, Spea2: Improving the strength pareto evolutionary algorithm for multiobjective optimization, in Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems, K. Giannakoglou, D. Tsahalis, J. Periaux, K. Papailou, and T. Fogarty, eds., International Center for Numerical Methods in Engineering (CIMNE), Barcelona, Spain, 2002, pp. 95–100.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.